

Multi-disciplinary integrated analysis solution for optimal design

midas NFX 2021R1 Enhancements

midas NFX Release Note

2021 R1

Major Updates

- CAD Interface update
- Shape memory alloy
- Complex mode analysis
- Nonlinear prestressed analysis
- Solar heat wall
- Thin plate model

midas NFX provides complete integration/linked analysis of structure/heat/fluid/optimization using a single model in a single work environment and a familiar environment for designers and systematic education and technology through a windows-based GUI.

In midas NFX 2021 R1, we strived to improve product performance and stability and increase user convenience. We promise to provide a variety of convenient functions to establish ourselves as a reliable partner in the future.

CAD Interface Update

The CAD Interface was updated according to the CAD Version update. Support for the latest version of CAD Interface may be delayed depending on the supplier's update environment. If the newest version is not supported, please convert it to Parasolid or STEP file. We will do our best to reflect on the latest version of CAD quickly.

Туре	Extension	Version
Parasolid	x_t, xmt_txt, x_b, xmt_bin _	9.0 ~ 33.0
ACIS	sat, sab, asat, asab	R1 ~ 2021.1.0
STEP	stp, step	AP203, AP214, AP242
IGES	igs, iges	Up to 5.3
Pro-E / Creo	prt, prt.*, asm, asm.*	16 ~ Creo 7.0
SolidWorks	sldprt, sldasm, slddrw	98 ~ 2021
CATIA V4	CATPart, CATProduct, cgr, CATDrawing	4.1.9 ~ 4.2.4
CATIA V5	CATPart, CATProduct, cgr, CATDrawing	V5 R8 ~ V5-6R2021
Unigraphics	prt	11 ~ NX1926
Inventor Part	ipt	V6 ~ V2021
Inventor Assembly	iam	V11 ~ V2021
SolidEdge	par, asm, psm	V18 ~ SE2021

midas NFX 2021R1

Shape Memory Alloy (Structural analysis)

\langle Purpose of development and method of use \rangle

A shape memory alloy is a metal mixture that remembers the original shape before deformation. This occurs due to the interaction of two physical phenomena. The first feature is pseudo-elasticity, which means a large deformation without residual deformation in repetitive loading-unloading cycles at high temperatures. The second feature is the shape memory effect. The shape memory alloy with residual deformation at low temperatures recovers to its original shape before deformation through thermal cycles.

This unique material behavior is due to the microstructural characteristics of the material, due to the phase transformation occurring between the denser austenite and the relatively less dense martensite. In general, austenite is stable under high temperature and low-stress conditions, while martensite is a stable crystal structure under low temperature and high-stress conditions. Due to the crystal structure characteristics, the phase change caused by changes in temperature and stress conditions causes pseudoelastic behavior and shape memory effects.

〈Martensite ratio according to temperature〉 〈Phase change according to temperature and stress conditions〉

Shape Memory Alloy (Structural analysis)

The shape memory effect of shape memory alloy materials is based on a three-dimensional thermomechanical model of phase change based on heat and stress. This model is built on the theory of thermodynamics and can realize the main features of shape memory alloys under three-dimensional stress conditions.

In midas NFX, the shape memory alloy material can be applied by changing the yield criterion to Shape Memory Alloy in the elastoplastic material property value. Martensite's elastic tangential stiffness, maximum phase strain, and upper-temperature limit are used to define the material's free energy potential and apply it to the analysis.

Linear Elasto Plastic HyperElastic Temperature Dependent 74PH, H100 151 1020 151 1020 153 1026 153 1026 Structural Elastic Modulus 0 N/mm ² Itermal Expansion Coefficient 0 Ref. Temperature 0 [1] 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 153 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 154 100 58 155 155 100 58 155 155 100 58 155 155 100 58 155 155				1223424820		
74PH, H100 Sti 1000 Sti 1000 Sti 1000 Sti 3045 Statel Statel Stel 3005 Stel 409 Stel ast Carbon Steel Stoel 211 Pol Hardening Slope I/(CR60) L-4000 Pol Part Part <td< th=""><th>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</th><th>Linear Elasto Plastic</th><th>Hyper Elastic</th><th>Nonlinea</th><th>r Elastic Temperature Deper</th><th>ndent</th></td<>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Linear Elasto Plastic	Hyper Elastic	Nonlinea	r Elastic Temperature Deper	ndent
ISI 1020 ICocel Ising and the attransite finish temperature ISI 1020 ISI 1020	-4PH, H1100	Structural				
at Dolo Annealed Sti Stok Annealed 0 Sti Stok 1005 0 Sti Stake 1005-RR 0 Mass Density 0	SI 1020	Elastic Modulus	0	N/mm ²	Thermal Expansion	
Sist 210 25S Sist 240 25S Sist 26S Sist 26S Sist 26S Sist 26S Sist 25S </td <td>SI 304 SS Annealed</td> <td>Elastic modulus</td> <td></td> <td>. Aunu</td> <td>Coefficient</td> <td>0</td>	SI 304 SS Annealed	Elastic modulus		. Aunu	Coefficient	0
ISIS_151_ctel_1005 ISIS_151_1005	SI 310 SS	Poisson's Ratio	0			
StS_Steel_1005 StS_Steel_1008-HR StS_Steel_1008-HR StS_Steel_and StS_Steel_and StAlloySteel ast Carbon Steel -1(CR60) -1(Creep -1(CR60) -1(CR60) -1(CR60)	SI_410_SS			0.02-002	Ref. Temperature	0 [T]
Si Steel Jobernaled Si Stava Annealed Si Steel Maraging oy Steel stat Alloy Steel stat Carbon Steel stat Stainless Steel rune Stainless Steel steel PHI-50 Steel PHI-55 Steel PHI	SI_Steel_1005	Mass Density	0	kg/mm³		
SIS _ Steel_Maraging Image: Steel Maraging loy Steel ast Carbon Steel ast Carbon Steel O N/mm ² ast Carbon Steel O N/mm ² ast Carbon Steel O N/mm ² alvanized Steel O N/mm ² located Steel Nome stace O N/mm ² stace O T stace Stace stace Stace stace None stace Marchistic Strain at Failure stace Damping Factors	SI_SIEEI_1008-RK SI 4340 Annealed					
loy Steel ast Carbon Steel advanzed Steel alcone alcone alcone alcone alcone alcone ast Carbon Steel alcone alcone alcone alcone alcone ast Carbon Steel alcone alcone p-4 alcone p-4 alcone p-4 stoel stoel stoel stoel alcone alcone p-4 alcone p-4 alcone stoel stoel stoel stoel stoel stoel alcone p-4 alcone stoel	SI_Steel_Maraging	Yield Criterion			Shape Memory Allov	1
ast Alloy Steel ast Carbon Steel ast Stainless Steel Z50 Advanzed Steel 200 -4000 -1 -4 0 10(CR60) -4000 -4 0-1 -4 0-1 -4 0-1 -4 0-1 -4 0-1 -4 0-1 -4 0-1 -4 0-1 -4 0-1 -4 0-1 -5 502 503 504 505 505 506 507 508 508 502 503 504 505 505 506 507 508 60 60	oy Steel				Shape Henory Hildy	
Said Calculation Steel UNITY And Calculation Steel Trome Stainless Steel 0 JVanized Steel 0 J(CR60) 0 -4000 0 -4000 0 -4000 0 -4000 0 -4000 0 -4000 0 -4000 0 -401 0 Steel 0 Steel 0 Steel 0 Steel 0 Steel 0 Maximum Transformation Strain 0 Maximum Transformation Strain 0 Maximum Transformation Strain 0 Steel Martensite finish temperature 0 Maxed Steel 0 0 Stool 0 0 0 Stool 0 0 0 Stool 0 0	ist Alloy Steel		· · · · ·			
<pre>rome Stainless Steel 2250 Wanized Steel 1260 Wanized Steel 10(CR60) -4000 -51 -50 -51 -54 Conel_718_Aged in Carbon Steel Steel PH15-5 Steel PH15-5 Steel PH15-5 Steel PH15-5 Steel PH15-5 Steel PH15-5 Steel PH16-5 Steel PH1</pre>	ast Stainless Steel	Elastic Modulus	of Martensiti	2	U	
2250 Judanized Stelel -1(CR60) 1-4000 >-1 >-4 John N/mm ² Lode Dependency Parameter 0 N/mm ² Lode Dependency Parameter 0 N/mm ² Lode Dependency Parameter 0 N/mm ² Maximum Transformation Strain 0 N/mm ² /[T] Maximum Transformation Strain 0 NPH +00 508 SACCN SACON SACON SACON <td>rome Stainless Steel</td> <td>Hardening Slop</td> <td>e</td> <td></td> <td>0</td> <td>N/mm²</td>	rome Stainless Steel	Hardening Slop	e		0	N/mm ²
available Sides L(CR80) L-4000 p-1 p-4 Lode Dependency Parameter 0 Maximum Transformation Strain 0 N/mm²/(T) Maximum Transformation Strain 0 Steel Ph15-5 SACC SACC <	250					1
L-4000 p-1 p-4 tconel_718_Aged ain Carbon Steel Steel_PH15-5 45C APH-400 5508 GACC SACCN S	-1(CR60)	Elastic Limit			0	N/mm ²
p-1 p-4 concel_718_Aged ain Carbon Steel Steel_PH15-5 45C APH-400 ES08 GACC GACEN GACCN GACCN GACCN GACCN GCC GCC GCC GCC GCC GCC GCC	-4000	Lode Depender	ncy Paramete	r	0	1
P-4 Concel_718_Aged lain Carbon Steel /Steel_PH15-5 45C APH-400 E508 GACC GACEN GACEN GACCA GACCA GCC GCD1 HP PC M45C Martensite finish temperature Creep Element Deletion Criterion for Explicit Dynamic Analysis GCC GCD1 HP M490A(KS) PCC PDE PRC340 R-0300 teel teel teel colled US304 US306 US	-1	100 V 200	C 10 10			1
ain Carbon Steel (Steel PH15-5 45C APH-400 E508 GACC GACEN GACCA GACCA GACCA GACCA GACCA GACCA GACCA GACCA GCC GCD1 HP Martensite finish temperature Creep Element Deletion Criterion for Explicit Dynamic Analysis Shear Failure Element Deletion Criterion for Explicit Dynamic Analysis Shear Failure Damping Factors Damping Factors	conel 718 Aned	Maximum Trans	formation St	ain	0	
/Steel PH15-5 45C APH-400 E508 GACC GACCN GACC300-E GCC GCC GCD1 HP M45C Martensite finish temperature Image: Constraint of the explicit Dynamic Analysis Effective Plastic Strain at Failure Image: Constraint of the explicit Dynamic Analysis PDE PRC340 R-0300 teel teel teel teel teel US316	ain Carbon Steel	Temperature S	caling Parame	ter	0	N/mm ² /[T]
43C APH-400 ES08 GACC GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN Galaxian GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GACEN GCC GCC GCD1 HP HP GDE PCC POE PCC None POE PRC340 R.0300 Telel teel teel Noled UP12 US316 US316 US316 US316 US316 US316 Transite finish temperature Damping Factors Torn_60 Torn_40	Steel_PH15-5					
GACC GACC GACCA GACCA GCC GCC GCD HP PP M45C M490A(KS) PCC PDE PRC340 R.0300 teel teel Rolled Uy12 US304 US316 US316 US316 US316 US316 US316 Creep Element Deletion Criterion for Explicit Dynamic Analysis Shear Failure Effective Plastic Strain.at Failure None None None Damping Factors Damping Factors	PH-400	Martensite finis	h temperatur	e	0	[1]
GACC GACEN GACEN GAC30-E GCC GCC GCD1 HP M450C M490A(KS) PCC PDE PRC340 R-0300 teel teel Rolled Uy12 US304 US316 US316 US316 US316 US316 US316 US316 US316 Creep Effective Plastic Strain at Failure None None Damping Factors Damping Factors	508	-			-	
GALCH GARC340-E GCC GCD1 HP M450C M490A(KS) PCC PDE PRC340 R-0300 teel Leel Rolled US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 VCC Y C X X X X X X X X X X X X X X X X X	ACC	Creep			2.2.2	
GCC GCD 1 HP M45C M490A(KS) PCC PDE RC340 R-0300 teel teel Rolled UP 12 US304 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 VCC PDE PDE PDE PDE PDE PDE PDE PDE	ACEN	Element Deletion Crite	erion for Expl	cit Dynami	c Analysis	
GCD1 HP M45C M490A(KS) PCC PDE PRC340 R-0300 teel teel Lest Rolled Up12 US304 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 US316 VCC VCC VCC VCC VCC VCC VCC VC	SCC	Shear Failure				
HP M45C M490A(KS) PCC PDE PRC340 R-0300 teel teel Rolled UP12 US304 US304 US304 US304 US304 US306 US316 US316 US316 US316 US316 US316 US316 Vrought Stainless Steel uctile Iron ron_40 ron_60 ron_Cast_G25 V C V	CD1	PGC - Marcola M	A		0	
None None None None None None None None None	IP 145C	En eurive Masu	c otrain at na	IUTE	0	
PCC PDE PPC 340 R-0300 teel teel Rolled UP12 US304 US316 US316L US316L US316L US316L US316L US316L US316L Damping Factors Damping Factors	1490A(KS)				None	ale and
PDE PPE PPC340 R-0300 teel teel Rolled Up12 US304 US316L US316L US316L Urought Stainless Steel uctile Iron ray Cast Iron ron_40 con_60 con_Cast_G25 v x x x x x x x x x x x x x x x x x x	CC C					
RC300 teel K-0300 teel Rolled UP 12 US 304 US 316 US 31	DE DE CARD					
teel teel Nolled UP12 UP12 US304 US316 US316 Us316 Us316 Us316 Us316 Orought Stainless Steel uctile Iron on_40 On_60 on_60 on_60 on_Cast_625	k-0300					
teel Rolled UP 12 US 304 US 316 US 31	eel					
UP 12 US304 US316 US316 US316L Urought Stainless Steel Uctile Iron on_40 on_60 on_Cast_G25	eel_Rolled					
JS316 JS316 JS316 JS316L vrought Stainless Steel uctile Iron on_40 on_60 on_60 on_cast_G25	IP12 IS304					
US316L /rought Stainless Steel uctile Iron on_40 on_60 on_60 on_cast_G25 V	JS316					
Irrought Stainless Steel uctile Iron ray Cast Iron on_40 on_60 on_Cast_G25 V X >	JS316L					
uctie iron ray Cast Iron on_40 on_60 on_Cast_G25	rought Stainless Steel					
Damping Factors Damping Factors Damping Factors Damping Factors	Ictile Iron				T	
on_60 on_Cast_G25	on 40				Damp	ing Factors
ron_Cast_G25	on_60					
x > 1	on_Cast_G25 🗸 🗸					
	>					

 \langle Shape memory alloy material interface \rangle

Complex Mode Analysis (Structural Analysis)

\langle Purpose of development and method of use \rangle

In the conventional real eigenvalue solution, the mass/stiffness matrix is real and symmetric and can only be applied to models where the mass matrix satisfies the positiveness. The complex eigenvalue solution can be used to obtain an eigensystem with damping for eigenvalues and eigenvectors when the conventional eigenvalue solution cannot be applied in midas NFX.

The complex eigenvalue mode can be caused by dynamic instability due to various shape variables and frictional forces. It can be used for multiple physical effects such as aeroelastic flutter, acoustics, and rotating bodies and measures the damping effect of structures in the entire system in many fields such as aviation, ships, automobiles, and defense industries. Or it can be used to define system safety against physical phenomena such as friction and rotation.

In the complex mode analysis subcase control, you can additionally set the number of complex eigenvalue modes to review the real eigenvalue and the imaginary eigenvalue of the imaginary part. Besides, the damping effect of the structure can be added by defining the damping ratio in the analysis control.

Material Tomperature	iterial)	Damping Definition	
Material remperature Non	e Y	Uniform Structural Damping	121
Eigenvectors		Uniform Structural Damping Coeff.	0
Number of Modes	10 🗢	Dominant Frequency	0 Cycle/sec
Frequency Range of Interest			[Cycle]/sec () [Rad]/sec
Lowest 0 Highest	t 0	Material Specified Structural Dam	ping
	Unit: [Cyde]/ sec	Dominant Frequency	0 Cycle/sec
Sturm Sequence Check		۲	Cyde/sec 💫 [Rad]/sec
MAC (Modal Assurance Criteria)		Modal Damping Function Modal D	amping Function 🗸 🏼
Experimental Mode	100		
No. of Concession, Name	0		
MAC Tolerance			
MAC Tolerance			
MAC Tolerance Export Result(Modal) Frequency for frequency dependent material	0 Lisit: (Cude)/ sec		
MAC Tolerance Export Result(Modal) Frequency for frequency dependent material Number of Complex Eigenvectors Modes	0 Unit: [Cycle]/ sec		
MAC Tolerance Export Result(Modal) Frequency for frequency dependent material Number of Complex Eigenvectors Modes	0 Unit: [Cycle]/ sec		
MAC V Tolerance Tolerance	0 Unit: [Cycle]/ sec 10 🗢		

<Complex mode analysis interface>

			СОМР	LEX EIGENV	ALUES		
MODE NUMBER	EIGENVALUE REAL	EIGENVALUE IMAG	DAMPED FREQUENCY	DAMPING RATIO			
1	-1.228206e+002	2.453339e+003	3.904611e+002	1.001252e-001			
2	-1.228206e+002	-2.453339e+003	3.904611e+002	1.001252e-001			
3	-1.541654e+003	3.079450e+004	4.901098e+003	1.001252e-001			
4	-1.541654e+003	-3.079450e+004	4.901098e+003	1.001252e-001			
5	-6.562246e+002	1.310808e+004	2.086215e+003	1.001252e-001			
6	-6.562246e+002	-1.310808e+004	2.086215e+003	1.001252e-001			
7	-2.117863e+003	4.230428e+004	6.732935e+003	1.001252e-001			
8	-2.117863e+003	-4.230428e+004	6.732935e+003	1.001252e-001			
9	-1.984765e+001	-3.964565e+002	6.309802e+001	1.001252e-001			
10	-1.984765e+001	3.964565e+002	6.309802e+001	1.001252e-001			
11	-2.692594e+003	5.378452e+004	8.560072e+003	1.001252e-001			
12	-2.692594e+003	-5.378452e+004	8.560072e+003	1.001252e-001			
13	-3.209808e+003	6.411587e+004	1.020436e+004	1.001252e-001			
14	-3.209808e+003	-6.411587e+004	1.020436e+004	1.001252e-001			
15	-1.067166e+003	2.131662e+004	3.392646e+003	1.001252e-001			
16	-1.067166e+003	-2.131662e+004	3.392646e+003	1.001252e-001			
17	-1.561541e+003	3.119176e+004	4.964323e+003	1.001252e-001			
18	-1.561541e+003	-3.119176e+004	4.964323e+003	1.001252e-001			
19	-3.396474e+002	6.784452e+003	1.079779e+003	1.001252e-001			
20	-3.396474e+002	-6.784452e+003	1.079779e+003	1.001252e-001			

<Complex mode analysis result table>

Nonlinear Prestressed Analysis (Structural Analysis)

\langle Purpose of development and method of use \rangle

Through General Nonlinear Prestressed Analysis, initial load results can be reflected in stiffness and applied to Modal Analysis or Complex Modal Analysis.

Various shape variables, boundary conditions, and damping effects are considered in complex mode analysis, but stiffness change due to initial load cannot be considered. To compensate for this, nonlinear prestress analysis has been added, and if necessary, analysis can be performed by selecting mode analysis and complex mode analysis and adding subcases. In this analysis, the stiffness of the sub-case present at the top marked as (Required) or (required) is applied to each sub-case, and it is possible to perform one analysis of multiple sub-cases by changing the damping effect and analysis conditions.

<Nonlinear Prestressed Analysis Interface>

Solar Heat Wall (CFD)

\langle Purpose of development and method of use \rangle

When the object to be analyzed is directly exposed to sunlight, the analysis result will differ depending on the location, date, and time. It is possible to analyze the radiation effect by directly inputting the external heat flux, temperature, etc., to the wall boundary conditions. However, it is difficult to correctly set the conditions due to the complicated state of actual sunlight, such as the heat flux value by date or time or the direct solar heat flux. Also, the obtained results are quite different when compared to actual experimental results. midas NFX provides a solver for the solar model to correctly input the radiation effect from sunlight, helping you perform faster, easier, and more accurate analysis.

Users can set geographic coordinates, mesh direction, date, time, and other related parameters in solar properties. Depending on the solar method, options such as the theoretical maximum (ignoring the atmospheric effect), application of the atmospheric composition (seasonal weather effect), and the solar coefficient can be set.

A spectral ratio represents the ratio of infrared rays among visible rays (short wave) and infrared rays (infrared rays; long wave) excluding ultraviolet rays, and 0.5 indicates that 50% of visible rays and infrared rays exist. The scattering ratio refers to the amount of unabsorbed radiant heat dissipated toward all the ground. The default value of the scattering ratio is 1. Users can set the ground reflectivity in midas NFX to define how much ground reflects the sunlight. The general ground has 0.2 for reflectivity ratio, and 0.7 can be used for the surface where snow is piled up, and so on.

In addition, users can set the transparency for the target model based on the previously defined sunlight. By selecting the opacity (absorption rate) and transparency (absorption rate, transmittance), sunlight is transmitted; that is, it is possible to analyze the physical properties of the shared object.

5 1			Name	Solar Load-1			
olar Calculator		_					
Global Position Longitude	127 d	eg	te and Time 1	Month	0	Hour	
Latitude	37.56 d	eg	1	Day	0	Minute	
North Vector	0, 1, 0 1, 0, 0	() S	Fair Wea	ther Condition: ctor		1	
Sun Direction Vec	tor		0,0,0				
	iation		1423	W/mm ²	Non	e 🗸	
Direct Solar Irrad			200	W/mm²	Non	e 🖓	
Diffuse Solar Irrad	diation						
Diffuse Solar Irrad	diation /(V+IR)	0.5					

<Solar heat definition interface>

On December 25th at 10:30am Seoul, Solar heat flux result under conditions reflecting weather effect >

midas NFX 2021R1

Thin Plate Model (CFD)

\langle Purpose of development and method of use \rangle

Many engineering issues are related to heating value. Heat must be removed to protect parts vulnerable to high temperatures, and it usually is discarded in fluids such as air. A heat sink is a device that quickly transfers heat generated from a heat source to a fluid. Several thin cooling fins increase the heat dissipation effect by increasing the contact surface with the fluid as much as possible. However, putting many elements in a thin and dense structure consumes too much computing resources. The thin plate model is applied to the cooling fins of a heat sink by simplifying the cooling fin to a surface without volume, which decreases the computing time. Also, it accurately calculates the fluid-solid heat transfer by reflecting the boundary layer effect that occurs in the flow over the solid wall.

<Heat sink model>

<The flow velocity distribution between cooling fins> < The temperature distribution between cooling fins >

<The temperature distribution of heat sink surface> <The convective heat transfer coefficient distribution>

Other Enhancements

\langle Authentication method related to abnormal termination \rangle

In web authentication, the license accesses are overlapped if the program is not normally terminated due to a network error or incomplete termination. By changing the authentication method, this error does not occur. The improved authentication method is the Heartbeat method, which checks whether the connection between the product and the server is stable by transmitting and receiving signals every few minutes. If the connection is not maintained, the product access status on the server-side is forcibly released with a brief delay.

< Node average stress calculation>

The method of averaging the element stress components (stress by direction, principal stress) is improved by averaging the element stress by direction and then calculating the principal stress again. In the previous method, a slight difference occurred between the von-Mises stress calculated based on the stress component for each direction and the von-Mises stress calculated using the principal stress component. However, the same von- Mises stress can be obtained by introducing the new method.

\langle The position of result value at the maximum/minimum display function \rangle

In the previous version, the stress result value was displayed at the element's center when using the maximum/minimum display function in the node average state. By fixing this problem, the maximum/minimum result value is displayed on the node at the node average state and on the center of the element at the element-centered state.

\langle The unit system for the display of legend at random response analysis \rangle

When checking the random response analysis results, the unit system has been improved to be displayed according to the PSD and NPX items in the legend.

