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Simultaneous Equation Solver 

The simultaneous equation solver is a method for finding the solution u  of a linear matrix equation in 

the form shown in equation (5.1.1): 

 

Ku = p      (5.1.1) 

 

Simultaneous equation solvers are not only used for linear static structural analysis, but also for all 

types of analysis such as eigenvalue analysis, dynamic analysis, nonlinear analysis, etc. General 

solvers include the Gauss elimination method, direct solver based on the decomposition method, and 

the iterative solver, which converges to a solution that minimizes iterative calculations. Direct solver is 

generally used for structural analysis because it is not affected by the numerical properties of matrices 

and can find the solution safely. However, when the size of the problem increases, the memory 

capacity and computation amount tend to increase rapidly. Hence, the iterative solver is recommended 

for large problems because it requires relatively less memory capacity. However for structural analysis, 

the iterative solver may not provide the wanted solution due to the numerical properties of matrices, 

and the number of iterative calculations needed to obtain the converging solution may be large. GTS 

NX provides a function that automatically determines the direct solver or iterative solver, depending on 

the size of the problem in question. 

 

In direct solver, the simultaneous equation solution is found in two steps. The first step is matrix 

decomposition and the second step is the forward-backward substitution (FBS) process. The LU  

solver, generally used for asymmetric matrices, can be applied to matrix decomposition in the following 

form for the symmetric stiffness matrix K obtained in finite element analysis. 

 

T LL u p  or 
T LDL u p    (5.1.2) 

L  : Lower triangular matrix 

D  : Diagonal matrix 

 

Generally, the matrix decomposition method that includes D  is needed when the stiffness matrix is 

not definitely positive. GTS NX uses the T
LL  form matrix decomposition method (Cholesky 

decomposition method) for linear static structural analysis. For eigenvalue analysis or nonlinear 

analysis, the positive definite condition cannot be guaranteed and so, the T
LDL  form matrix 

decomposition method is used. 

 

When applying the direct solver, the sparse matrix needs to be applied appropriately. Generally, the 

stiffness matrix K  generated in finite element analysis is a sparse matrix with multiple '0', and the 
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required memory capacity and computation amount differs greatly depending on how this sparsity is 

used. Hence, GTS NX not only provides the direct solver for general dense matrices that do not use 

the sparse matrix, but also provides the multi-frontal solver, which appropriately uses the sparse matrix 

to greatly reduce the memory capacity and computation amount.  

The multi-frontal solver requires reordering of DOFs to minimize the memory capacity and computation 

amount using the sparse matrix, and matrix decomposition is performed by separating the matrix into 

multiple fronts according to this reordered information. Figure 5.1.1 displays the effective computation 

order of a rectangular mesh generated by DOF reordering. The algorithm used to implement DOF 

reordering is a recursive bisection, and forward substitution is done in the same order as the matrix 

decomposition whilst backward substitution is done in the opposite order. 

 

 
 

The multi-frontal solver used in GTS NX does not assemble and save the stiffness matrix of the entire 

region individually and hence, requires less memory capacity than the general multi-frontal solver. The 

out-of-core analysis function is supported to provide additional hard disk memory automatically during 

memory shortage when solving large problems. 

 

Also, implementation of the multi-frontal solver uses the computation ability of the Graphics Processing 

Unit (GPU) to process calculations. The recent demand for complex problems highlights the 

importance of the simultaneous equation solver performance, which is the core of finite element 

analysis. The GPU consists of multiple computation units (cores) and provide a much higher 

computational performance than the CPU. The GPU is applied to real matrix decomposition, which 

takes the longest computation time, to provide an overall improved computational performance. 

 

The iterative solver is a method of reducing the error of the approximate solution through iterative 

calculations and so, it is very important to reduce the convergence error using only a small number of 

calculations. Generally, the number of iterative calculations is determined by the preconditioning 
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Figure 5.1.1 Matrix 
decomposition order of multi-
frontal solver 
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method. GTS NX uses the SA(smoothed aggregation) AMG(algebraic multi-grid)1 methods which are 

preconditioning methods that are known to be stable, regardless of the element shape. The number of 

calculations of the AMG method is not greatly affected by the number of DOF because it uses a multi-

grid, and this method displays stable convergence when used on elements that have displacement 

and rotation nodal DOFs such as shell elements. The multi-grid is composed automatically for the 

iterative solver using the AMG method, and this is created by the representative DOFs of the adjacent 

node set and each node set. 

 

 
 

As explained above, the performance of the direct solver and iterative solver differ on the size of the 

problem and GTS NX provides an automatic selection function to determine the solver. When using 

the automatic section function, the direct solver using the dense matrix is selected for small size 

problems, the multi-frontal solver is selected for medium size problems and the AMG iterative solver is 

selected for large size problems. 

 

The automatic selection criterion is determined by considering the following points. 

 

► When empirical condition is known : Determined with reference to the number of user input nodes or 

elements 

► When empirical condition is unknown : Determined within the program with reference to the number 

of model DOF and system memory size 

Figure 5.1.2 Example of node 
set for multi-grid composition 
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Eigenvalue Extraction  

Eigenvalue extraction is a fundamental algorithm of normal mode analysis, and the eigenvalue 

extraction problems in normal mode analysis have the following form. 

 

(no summation)i i i   K B 0    (5.2.1) 

K  : Stiffness matrix 

B  : Mass matrix ( M ) when performing normal mode analysis 

 

The eigenvalue extraction method in GTS NX is coupled and changes with the simultaneous equation 

solver. The Lanczos resampling is used for the multi-frontal solver (the default value of the 

simultaneous equation solver), and eigenvalue extraction or direct solver using the dense matrix is 

used for the dense matrix solver. Each method has the following characteristics. 

 

• Lanczos resampling 

► Appropriate for large sized problems. 

► Because the eigenvalue can be omitted, use of the Sturm sequence check option is recommended. 

 

• Direct solver using the dense matrix 

► The performance can suddenly decrease when the number of DOF is around 310  and so, it is 

appropriate for small scale test models. 

► The eigenvalue is not omitted. 

 

Lanczos resampling is a method of finding the approximate eigenvalue using the tridiagonal matrix 

that arises when generating the Krylov subspace
1, 2( ,..., )kspan V V V

1 . For effective eigenvalue 

calculation, the block tridiagonal matrix2 can be used, and because the tridiagonal matrix size is 

maintined similar to the number of eigenvalues, the computation speed is very fast and it is 

appropriate for large scale problems. However, eigenvalue omission can occur and so, it is useful to 

use the checking option. 

The direct solver using the dense matrix goes through the stiffness matrix decomposition, tridiagonal 

matrix generation and eigenvalue calculation processes. Tridiagonal matrix generation and eigenvalue 

calculation is done for the entire matrix and eigenvalue omission does not occur. However, it is 

inappropriate for solving large size problems. 

                                                                 
1 Hughes, T.J.R., The Finite Element Method, Prentice-Hall International, Inc., New Jersey, 1987 
2 Cullum, J. and Donath, W., “A Block Lanczos algorithms for computing the q algebraically largest eigenvalues and a 

corresponding eigenspace of large real symmetric matrices,” Proc. 1974 IEEE Conference on Decision and Control, IEEE 

Computer Society, 1974 
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Eigenvalue computation range 

For normal mode analysis, the number of eigenvalues and its range considers the modal participation 

factor (equation 5.3.1) or modal effective mass (equation 5.3.3), or can be determined with reference 

to the frequency region of interest. If the number and range of eigenvalues is determined, it can be set 

using the following inputs. 

 

Variable setting (
1v , 

2v , N input or not input) Eigenvalue range 
Number of 

eigenvalues 

1v , 
2v , N  

1 2v v v 
 Maximum N  

1v , not input, N  1v v
 Maximum N  

not input, 
2v , N  

2v v
 Maximum N  

not input, not input, N  v   Maximum N  

1v , 
2v , not input 1 2v v v 

 All eigenvalues 

1v , not input, not input 1v v
 All eigenvalues 

not input, 
2v , not input 

2v v  All eigenvalues 

not input, not input, not input v   All eigenvalues 

 

The 1v , 2v  inputs above are the frequency (Hz) in normal mode analysis. 

 

Eigenvalue computation results 

Eigenvectors, which are the results of the eigenvalue problem, satisfy equation (5.2.2), even if its size 

changes. 

 

( )i i i i i i

i i

a

a

     

 

   



K B K B 0
   (5.2.2) 

 

Hence, a method is needed to express the size of the calculated eigenvalue consistently. GTS NX 

applies the eigenvector normalization process such that the following equation is satisfied, depending 

on the analysis type. 

 

1T

i i  M      (5.2.3) 

 

The eigenvalue calculation algorithm is only an approximate solution, even when the direct solver for 

the dense matrix is used, and its accuracy cannot be guaranteed. Therefore, GTS NX selects the 

following values as the eigenvalue calculation results to check the accuracy of the calculated 

eigenvalue and eigenvector. 

 

  

Table 5.2.1 Setting the number 
and range of eigenvalues 
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Result article Calculation 

Generalized mass T

i i ib   B
 

Generalized stiffness T

i i ik   K
 

Orthogonality loss 1 1max( , )
T T

i i i i
i

i ik b

   
  

K B

 

Error measure 
i i i

i

i

e
  






K B

K
 

 

  

Table 5.2.2 Calculation results 
excluding eigenvalue and 
eigenvector 
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Effective Mass and Mode 
Superposition 

After calculating the natural frequency, natural period and mode shape using mode analysis, these 

can be used to compute useful information such as modal effective mass or modal participation factor. 

The i th modal participation factor is expressed as 
i and can be calculated as follows: 

 

1
, 1,2,3,4,5,6 (no summation)

(generalized mass)

T

i i

i

T

i i i

m

m

  

 

  



MT

M

   (5.3.1) 

  : DOF direction (1~3 : displacement, 4~6 : rotation) 

 

Here, T  is the matrix that represents the size of the directional stiffness behavior and it is defined for 

each node to have the following property: 

 

10 0

20 0

30 0

4

5

6

1 0 0 0

0 1 0 0

0 0 1 0
,

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ez z y y

ez z x x

ey y x x
e

e

e

e

 

    
  

    
     

   
   
   
   
      

  (5.3.2) 

 

0 0 0, ,x y z  represent the center of rotation. GTS NX sets it as an arbitrary node or the center of mass 

for the entire model.  

 

The modal effective mass is also defined for each direction and can be simply calculated using the 

modal participation factor as follows: 

 

2( )eff

i i im m       (5.3.3) 

 

Adding the effective mass for all modes is the same as the mass of the entire model, excluding the 

nodes that have assigned constraint conditions. 
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The mode superposition method can be applied to dynamic response analysis. Mode superposition 

uses the eigenmode found from eigenvalue analysis (instead of directly solving the linear dynamic 

equilibrium equation) to solve the size reduced mode equilibrium equation as shown below:  

 

( ) ( ) ( ) ( )t t t t  Mu Cu Ku f     (5.3.4) 

 

The spatial coordinate system displacement  tu can be expressed as a combination of the modal 

displacement  tξ using the eigenmode shape Φ  as follows: 

 

     1 2, ... Nt t    u Φξ Φ    (5.3.5) 

 

Using this, the dynamic equilibrium equation (5.3.4) can be expressed in the modal coordinate system 

as follows: 

 

[ ] ( ) [ ] ( ) [ ] ( ) ( )T T T Tt t t t  Φ MΦ ξ Φ CΦ ξ Φ KΦ ξ Φ f    (5.3.6) 

 

Generally when mode superposition is applied, the high order modes are excluded and only partial low 

order modes are used to compose the eigenmode shape Φ  and so, equation (5.3.6) is an 

approximation of equation (5.3.4). Hence, if an insufficient number of eigenmodes is included in the 

calculation for expressing the actual physical displacement, the accuracy of the calculated results can 

fall greatly. 

 

The mode equilibrium equation (5.3.7) is expressed independently for each mode when the modal 

damping matrix T
Φ CΦ is '0', as shown below:  

 

( ) ( ) ( )i i i i im t k t p t      (5.3.7) 

im   : i th modal mass ip   : i th modal load 

ik   : i th modal stiffness i   : i th modal displacement 

 

Using the mode superposition method above, the equilibrium equation can be reduced to have the 

same number of variables as the number of calculated eigenmodes, and analysis can be performed 

effectively when the mode equilibrium equation is fully separated between modes. 

 

Damping term treatment  

If the modal damping matrix is diagonalized and the coupling removed for the modal equilibrium 

equation (5.3.7) that is reduced using the eigenmode, it can be expressed as a separated form for 

each mode like equation (5.3.8). 

 

( ) ( ) ( ) ( )i i i i i i im t b t k t p t         (5.3.8) 

3.2 
Mode Superposition 
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ib  : i th modal damping 

 

Or, it can be expressed as follows. 

 

2 1
( ) 2 ( ) ( ) ( )

ii i i i i i

i

t t t p t
m

          (5.3.9) 

 2i i i ib m    : Modal damping ratio 

  
2

i i ik m       : Modal frequency 

 

The modal damping value can be input differently according to the frequency and in this case, the 

modal damping value is added to the modal damping matrix T
Φ CΦ , which is composed of other 

general damping values such as mass-proportional damping, stiffness-proportional damping etc. 

Hence, modal separation of the modal equilibrium equation is possible when the modal damping 

matrix T
Φ CΦ is a diagonal matrix, and this is applicable when the proportional damping coefficient 

and structural damping is constant for each element and when damping elements (spring, damper) do 

not exist. If not, the coupling between equilibrium equations of each mode, due to the un-diagonalized 

modal damping term, needs to be considered. 

 

Enforced motion 

When enforced motion is given in the mode superposition method, it cannot be applied directly to the 

modal equilibrium equation. GTS NX uses the following processes to apply enforced motion.  

Firstly, the equilibrium equation (5.3.4) is separated into the DOFs with and without enforced motion. 

 

11 12 1 11 12 1 11 12 1 1

21 22 2 21 22 2 21 22 2 2

             
              

             

M M u C C u K K u f

M M u C C u K K u f
  (5.3.10) 

1u  : Displacement of unconfined DOF 

2u  : Displacement of DOF confined by enforced motion 

1f  : Load acting on unconfined DOF 

2f  : Confining force of DOF confined by enforced motion 

 

Separating the unconfined DOF displacement 1u into the following quasi-static displacement 1

qs
u and 

dynamic relative displacement y  is as follows: 

 

1 1

1

1 11 12 2

qs

qs 

 

 

u u y

u K K u
    (5.3.11) 
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Rearranging for the dynamic relative displacement y ,  

 

 1

11 11 11 1 11 11 12 12 2

    M y C y K y f M K K M u   (5.3.12) 

 

The damping related terms on the right hand side of the equation were ignored. Applying the mode 

superposition method and expressing the equation using the modal relative displacement 

   11t ty Φ x  is as follows: 

  

 1

11 11 11 11 11 11 11 11 11 11 1 11 11 12 12 2

1

1 1 11 12 2 11

T T T T

qs





                 

    

Φ M Φ x Φ C Φ x Φ K Φ x Φ f M K K M u

u u y K K u Φ x
 (5.3.13) 

 

If the 11K  has singularity because of an existing rigid-body mode in the structure, the singularity can 

be removed by appropriate shifting using the stiffness matrix 11K  and mass matrix 11M . 

 

Residual vector 

As explained above, errors can occur due to high order modes that are not included in the eigenmode 

shape Φ  when using mode superposition. To reduce such errors, GTS NX uses the residual vector 

R , which is composed perpendicular to the existing eigenmode, for the mass matrix M  and stiffness 

matrix K .    
 

1( )T R K I MΦΦ F    (5.3.14) 

 

Here, F  is generally composed of the load vector and the damping force is included when a damping 

element exists.  

GTS NX uses the method suggested by Dickens 3  etc. to find the augmented mode shapes 

perpendicular to the residual vector R . This is added to the existing eigenmode shape Φ  for 

applying mode superposition.  

 

  

                                                                 
3 J.M. Dickens, J.M. Nakagawa, and M.J. Wittbrodt, “A Critique of Mode Acceleration and Modal Truncation 

Augmentation Methods for Modal Response Analysis” Computers & Structures, Vol 62, No. 6, 1997, pp. 985-998 
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Section 4 
 
 
 
 
 

Dynamic Response  

GTS NX uses direct time integration and mode superposition to obtain the transient response of the 

linear equation of motion shown in equation (5.3.4). For the direct time integration of linear problems, 

the implicit method is used.  

 

Implicit direct integration  

GTS NX uses the   method ( HHT  )4  suggested by Hilber, Hughes, Taylor for implicit direct 

integration. The HHT   method is a general form of the Newmark method5 and has a controllable 

numerical damping effect. Using this, the high frequency noise can be controlled and it has a 2 order 

accuracy for time steps, just like the Newmark method. The HHT   method uses the following 

modified dynamic equilibrium equation:  

 
1 1 int, 1 , 1 int, ,(1 )n n n ext n n n ext n

H H                 Ma Cv f f Cv f f 0  (5.4.1) 

 

Here, 1n
a and 1n

v  each represent the acceleration and velocity vector of the 1n   th time step and 

[ 1 3,0]H    is the coefficient that determines the numerical damping effect. When considering the 

effects of non-mechanical strain, such as thermal expansion of the material, and the internal forces 

due to in-situ stress and pore pressure, the internal forces of linear analysis can be expressed as the 

following equation including the product of stiffness matrix and DOF.  

 
int, 1 1 nonmech, 1 int,0n n n    f Ku f f     (5.4.2) 

 

Introducing the time step equation from the Newmark method, the velocity, displacement and 

acceleration at time steps , 1n n can be expressed using the following relationship:  

 
1 1

1 2 1

(1 )

1
2 (1 2 )

2

n n n n

n n n n n

t

t t

 

 

 

 

      

        

v v a a

u u v a a

  (5.4.3) 

 

Recomposing the equilibrium equation (5.4.1) using equations (5.4.2) and (5.4.3), the following 

simultaneous equation with the displacement at time 1n  as a variable can be obtained as follows: 

 

                                                                 
4 H.M Hilber, T.J.R. Hughes, and R.L. Taylor, “Improved Numerical Dissipation for Time Integration Algorithms in 

Structural Dynamics,” Earthquake Engineering and Structural Dynamics, Vol 5, No. 3, 1977, pp. 283-292 
5 M. Newmark, “A Method of Computation for Structural Dynamics,” ASCE Journal of the Engineering Mechanics 

Division, Vol. 5, No. EM3, 1959, pp. 67-94 
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1

2

int,0 , 1 , 1 , ,

2

(1 )1
(1 ) ,

(1 )

1 1 1
1

2

(1 ) (1 )
1 (1 ) 1

2

eff eff

n

eff H
H

eff ext n nonmech n ext n nonmech n

H H

n n n

n nH H
H

t t

t t

t
t

 


 

 

  

    


  



 




   

 

             

  
     

    

    
       

   

K u f

K M C K

f f f f f f

M u v a

C u v
n n

H
 

 
 
a Ku

 (5.4.4) 

 

The right hand side eff
f  from equation (5.4.4) is determined by the internal force and calculated 

displacement, velocity, acceleration at time step n . When the right hand side is determined, the 

displacement vector 1nu at 1n  can be calculated using the simultaneous equation solver explained 

in the section above. The velocity and acceleration at 1n  can be obtained by substituting this 

calculated displacement into the Newmark time step equation (5.4.3). The transient response of the 

structure can be calculated by the time integration that repeats the processes outlined above. 

The effective stiffness matrix ( eff
K ) in the left hand side of equation (5.4.4) reuses the once 

decomposed matrix when the time step is kept constant, allowing effective analysis by only repeating 

the front-back substitution process. 

HHT   time integration has unconditional stability when (1 2 ) / 2H   , 
2(1 ) / 4H   and 

when 0H  . It is specialized in to the Newmark method that uses the average acceleration. GTS NX 

uses a default value of 0.05H   . 

 

Damping effect 

GTS NX considers two types of damping: mass-proportional damping and stiffness-proportional 

damping. There is also mode damping, which is only applied for mode superposition as mentioned in 

section 5.3.2. The damping effects in linear time history analysis are applied to the damping matrix C  

in the following form: 

 
e e e e

j j j j   C M K B    (5.4.5) 

e

j  : Mass proportional damping coefficient for j th element 

e

j  : Stiffness proportional damping coefficient for j th element 

e

jM  : Mass matrix of jth element 

e

jK
 

: Stiffness matrix of jth element 

B  : Damping matrix due to damping element (damper) 
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Application of mode superposition 

To use time integration using mode superposition, the mass in the mode equilibrium equation (5.3.6) is 

set to '1' and rewritten as follows: 

 

2( ) ( ) ( ) ( ) ( )

[ ] [ ]

i
iji j i i i i

T
ij ij ij

p
t C t t p t p t t t

t

C

   


     


 C Φ CΦ

   (5.4.6) 

 

Time integration using mode superposition can be classified into two types, depending on the ductile 

state of the mode damping matrix ijC : 

 

► Uncoupled system 

If the mode damping matrix ijC  is diagonalized and the ductility is removed, the response is analyzed 

independently for each mode and the displacement and velocity of each time step is determined from 

the displacement and velocity of the previous time step using the following equation. The modal 

integral coefficients 
ia , 

ib  at the i th mode can be obtained by finding the particular solution and 

homogeneous solution of (5.4.6) and applying it to the initial condition (displacement and velocity of 

the previous time step).  
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         
        

   (5.4.7) 

 

► Coupled system 

If ductility is not removed from the mode damping matrix, the ductility between modes needs to be 

considered and modal analysis cannot be performed independently. In this case, GTS NX separates 

the mode damping matrix into the following diagonal component ( diagC ) and off-diagonal component 

( offC ) and treats the damping force of the off-diagonal component as an external force for analysis. 

 

diag off C C C     (5.4.8) 

 

In this case, all displacements are independent and the mode velocity is softened to compose the 

following simultaneous equation. If the time step is fixed, it can be solved without extra matrix 

decomposition, just like direct time integration. 
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Initial condition of mode superposition 

When initial displacement and initial velocity are given, the initial displacement 
0

i  and initial velocity 

0

i in the modal coordinate system is defined as follows. Using all modes gives an equation, and using 

partial modes gives an approximate relationship. 
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i i
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 

 





Mu

Mv

    (5.4.10) 

i  : i th eigenmode shape 

0u
 : Initial displacement 

0v
 : Initial velocity 

 

Frequency response analysis calculates the structural response under a load vibrating at a uniform 

frequency. All loads in frequency response analysis are defined in the frequency domain and 

expressed as a function of excitation frequency. In other words, the load in frequency response 

analysis can be expressed using the following complex harmonic function when the angular excitation 

frequency is  .  

 

    i tt e f f      (5.4.11) 

 

The response can also be expressed in the same form. 

 

    i tt e u u     (5.4.12) 

 

Using this, the equation of motion is expressed in the following form: 

 

   2 i        M C K u f    (5.4.13) 

 

Here, both the load and displacement are expressed as complex numbers. When expressing the 

complex value using magnitude/phase angle, the magnitude represents the maximum load or 

displacement within the vibration period and the phase angle is the position (angle) at which this 

maximum value occurs. On the other hand, when expressing the complex value using real 

component/imaginary component, the real component is the load or displacement magnitude at the 

starting point of the vibration period and the imaginary component is the load or displacement after 1/4 

period ( / 2 ). Hence, the imaginary component changes with the vibration period. The relationship 

between magnitude/phase angle and real component/imaginary component is as follows: 

4.2 
Frequency Response 
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2 2

r iu u u 
 

: Magnitude 

1tan ( / )i ru u 
 

: Phase angle 

cosru u 
 

: Real component 

siniu u 
 

: Imaginary component 

 

Direct frequency response analysis 

When using the direct solver for direct frequency response analysis, solving the simultaneous equation 

(5.4.13) gives the frequency response  u . If there is no damping, equation (5.4.13) is a real number 

simultaneous equation. But if there is damping, it is a complex number simultaneous equation. The 

solution can be found accurately using the direct method, but calculation is very inefficient for large 

problems or when many frequencies exist because the simultaneous equation needs to be 

recomposed and solved for each frequency. 

 

Response spectrum analysis is a method of evaluating the structural response due to base motion 

(uniform shaking of nodes confined by the boundary condition), especially earthquakes, and is the 

most generalized method for seismic design. This method assumes a linear system response and only 

evaluates the maximum response. Hence, analysis using time integration outlined in sections 5.4.1 

and 5.7 is appropriate for problems that have dominant nonlinearity or when results considering the 

simultaneity of a particular time step are important. 

The maximum response is evaluated as a mode combination, which reflects the mode participation 

rate on the modal response corresponding to the predefined spectrum function. Here, because 

simultaneity of the modal maximum response is not considered and the response itself is calculated as 

a combination, the response spectrum analysis results can be seen as an approximate solution for 

time integration. Hence, if the spectrum function is defined for a particular acceleration or particular 

seismic wave, the response spectrum analysis result obtains an approximate maximum value of the 

linear transient response analysis result for the input acceleration. However, the analysis results for 

seismic design are more generally obtained using the design response spectrum, made from the 

statistical historical seismic waves in a particular region or country.  

 

Modal spectrum response 

The static equilibrium equation for response spectrum analysis is shown in equation (5.3.6), and the 

maximum modal response can be expressed using the spectrum data as follows: 
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   

   

   

  

    

    

   (5.4.14) 

 ,D i iS    : Displacement spectrum data 

4.3 
Response Spectrum 
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 ,V i iS    : Velocity spectrum data 

 ,A i iS    : Acceleration spectrum data 

i  : Participation factor of the i th mode 

 

Substituting equation (5.4.14) into equation (5.3.5) can express the contribution of the maximum 

modal displacement, velocity, acceleration as an equation of spectral data. 
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  

   

   

 

   (5.4.15) 

 

A point in the spectrum data is defined as the absolute maximum modal response value of the natural 

period (natural frequency), and the effects of the modal damping ratio is included. Because the 

maximum response of each period is very diverse for the response spectrum of a particular 

acceleration history, it is expressed as a very complex graph form. However for the design response 

spectrum, a simple line combination in log scale as shown in figure 5.4.3 is generally used: 
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Modal combination method 

The maximum physical quantities for each mode (maximum value of each displacement, stress, 

member force, reaction force etc. component) is called 
max

iR
.
 If the actual maximum physical quantity 

is assumed as the sum of the maximum values of each mode, simply adding the maximum values of 

each mode is sufficient. However, because the maximum values of each mode cannot be guaranteed 

to occur at the same time step, the maximum value cannot be found using only simple linear 

superposition. 

Figure 5.4.3 Example of 
acceleration response spectrum  
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max

max

1

N

i

i

R R


     (5.4.16) 

 

Hence, a modal combination method needs to be introduced to evaluate the maximum value 

approximately. Various modal combination methods that consider the superposition characteristics or 

damping effects have been introduced, but because there is no definite method that gives an 

appropriate value for all cases, the characteristics of each modal combination method need to be 

understood.  

 

► Summation of the absolute value (ABS) 

 

max

max

1

N

i

i

R R


     (5.4.17) 

 

This method assumes that all modal responses have the same phase and judges all absolute 

maximum modal values to occur at the same time. Hence, it provides the largest value. 

 

► Square root of the summation of the squares (SRSS) 

 

 
2

max

max

1

N

i

i

R R


      (5.4.18) 

 

This method provides appropriate results when each mode is sufficiently separated: 

 

► Naval research laboratory method (NRL) 

 

 
2

max max

max

1,

N

m i

i i m

R R R
 

      (5.4.19) 

 

This method removes one mode ( m ) that has the maximum absolute value from the SRSS method, 

and like the SRSS method, this method provides appropriate results when each mode is sufficiently 

separated. 

 

Because these methods above are effective only when the modes are sufficiently separated and not 

adjacent, the US Nuclear Regulatory Commission (NRC) regulatory guide 1.92(1976) suggests 

appropriate evaluation methods for maximum values when multiple modes are adjacent. 

 

► Ten percent method (TENP)  
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1
2

max

1 1

2
N i

i i j

i j

R R R R


 

 
  

 
     (5.4.20) 

 

This method includes effects of all adjacent frequency modes within 10% of the SRSS. Here, the 

frequencies of two modes , ( )i j j i are judged to be adjacent within 10% frequency if the following 

condition is satisfied:  

 

0.1
i j

i

 




     (5.4.21) 

 

► Complete quadratic combination method (CQC)  

 

max

1 1

N i

i ij j

i j

R R R
 

     (5.4.22) 

 

Here, ij is the cross-correlation coefficient, which is defined as follows:  
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    
  (5.4.23) 

ijr  : Frequency ratio  ( /j i  ), j i   

 

If i j  in equation (5.4.23), 1ij   regardless of the damping ratio. If the damping ratio is '0', 1ij 

for all nodes and the results are the same as the SRSS results. When the damping ratios of two 

modes are identical, it can be simplified to equation (5.2.24) 
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
  

  
  (5.4.24) 

 

Sign of modal combination result  

Because modal combination methods are displayed as absolute values of the mode results, all 

response spectrum results always have a positive (+) value. However, for directional results such as 

reaction force or deformed shape, appropriate signs need to be applied. The most general method for 

determining the sign of the combined results is following the sign of the major mode. The major mode 

is defined as the mode, out of the modes that have the largest mass participation rate for each 

directional component, that has the most closest direction to the defined spectrum direction (load 

direction). 
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Spectrum data correction  

Spectrum data is a function form for the natural frequency and modal damping ratio, as shown in 

equation (5.4.14). However, because the user cannot know the frequency before analysis, the 

spectrum data is defined as a table with a constant interval. Hence, the interpolation is used when 

reading the spectrum value of the applicable frequency or period of the structure and linear 

interpolation on a logarithmic scale, which expresses the spectrum response for natural period change, 

is most generally used. When entering the spectrum data for multiple damping ratios, linear 

interpolation on a logarithmic scale is performed in the same way for the structural modal damping 

ratio.  

However when spectrum data is available for only one damping ratio, there is no data for interpolation 

and a special interpolation method is needed for that single damping ratio. The Japan specifications 

for highway bridges (2002) suggest the following correction factor for the damping ratio: 
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   (5.4.25) 
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When the damping ratio is '0.05', 1DC   (Point A ) and equation (5.4.25) connotes the correction factor 

when the damping ratio of the spectrum data is '0.05'. Hence, when the damping ratio ( spectrum ) of the 

spectrum data is not '0.05', the ratio of correction factors corresponding to each damping is applied as 

the final damping correction factor, as shown in equation (5.4.26). 

 

 

 
max maxD i

i i
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C
R R

C




    (5.4.26) 

 

Figure 5.4.4 Correction factor 
for damping ratio 
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Nonlinear Finite Element Solution 

Nonlinear Finite Element Solution is a method of converging the accumulated incremental solution 

from iterative calculations to the correct solution, and it is processed as shown in figure 5.5.1. 

 

 
 

In the figure, 
t

extf and
t t

ext


f  each represent the external forces at time t  and time t t , and the 

solution and incremental solution between time t  and time t t  can be expressed as the following 

relationship:  

 
t t t  u u u     (5.5.1) 

u  : Incremental solution occurring at time increment t   

 

If iterative calculation is performed for nonlinear analysis in the time increment t , the accumulated 

incremental solution is as follows:  
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     u u u u u   (5.5.2) 

iu  
: Accumulated incremental solution up to i  th iterative 

calculation  

1i u  : Incremental solution occurring at 1i   th iterative calculation 
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incremental solution and 
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convergence 
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1i u  is calculated from the following linear simultaneous equation using the tangential stiffness matrix 

1iK . 

 

1

1 1i i i 

 u K g     (5.5.3) 

ig  : Residual force, unbalanced 

force 

 

The unbalanced force ig  is expressed as the following difference between external force 
t t

ext


f  and 

internal force ,int if . 

 

,

t t

i ext int i

 g f f     (5.5.4) 

 

Equations (5.5.2)-(5.5.4) are iterated until it satisfies the user specified convergence criteria, and the 

convergence criteria judges using the change in member force, displacement or energy etc.  

 

Line search 

GTS NX provides the line search function to improve the performance of the basic iterative solutions 

explained above. The fundamental concept of line search is the introduction of a scalar value  during 

the process of adding the calculated incremental solution 1i u to the accumulated incremental solution 

for improved accuracy. In this case, the accumulated incremental solution is calculated as follows:  

 

1 1i i i    u u u     (5.5.5) 

 

Assuming that the calculated 1iu  above satisfies the equilibrium state and uses the principal of 

stationary total potential energy, the line search problem results in finding the   at which the 

derivative of the total potential energy for   is '0'. 

 

1( ) ( ) 0T

is    u g     (5.5.6) 
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Assuming linear change for the energy derivative ( )s   about  , the   that satisfies equation (5.5.6) 

is calculated as follows: 

 

( 0)

( 1) ( 0)

s

s s




 

 
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  
   (5.5.7) 

 

Here, the slopes at which   is '0' or '1' can be expressed as follows:  
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u g
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    (5.5.8) 

 

Because the assumptions made for the line search algorithm are not accurately satisfied for the real 

case, the ( )s   calculated from equation (5.5.7) is generally not '0'. In GTS NX the processes outlined 

above are repeated until the ( ) / ( 0)js s   value is below the user-specified constant value. 

 

Initial stiffness, Newton Raphson, Modified Newton Raphson 

The iterative methods in nonlinear analysis can be classified into the Initial stiffness, Newton Raphson, 

Modified Newton Raphson methods depending on the calculation point of the tangential stiffness. The 

Initial stiffness method continuously maintains the tangential stiffness calculated at the start point of 

analysis. The Newton Raphson method recalculates the tangential stiffness for each iterative 

calculation. The Modified Newton Raphson calculates the tangential stiffness where a change in 

external force occurs. Because tangential stiffness, matrix calculation, and matrix decomposition 

requires a long calculation time, using the Initial stiffness and Modified Newton Raphson methods is 
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algorithm 
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faster than the Newton Raphson method when problems do not occur in the convergence process. 

GTS NX does not classify the Initial stiffness and Modified Newton Raphson methods explicitly. 

Defining the tangential stiffness recalculation point can give the effects of all iterative methods. 

 

Automatic stiffness matrix recalculation  

It is important to select an appropriate calculation point for tangential stiffness, depending on the 

characteristics of the target analysis model such as nonlinearity, evenness of the converging solution, 

etc. GTS NX provides the automatic tangential stiffness update, which judges an appropriate 

recalculation point by considering the overall characteristics of the nonlinear problem such as 

convergence characteristics or determination of divergence etc., as a nonlinear finite element solution. 

Tangential stiffness update is performed when the following conditions are satisfied: 

 

► When the expected number of iterative calculations is larger than the user defined maximum 

number 

► When the solution is determined to diverge 

 

Convergence condition 

The convergence of the iterative solution is judged using the force norm, displacement norm and 

energy norm.   

 

int, int,

Force norm ratio 
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i i
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i i
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   (5.5.9) 

Displacement norm ratio 
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   (5.5.10) 

int,

Energy magnitude ratio 
T

i i

T

i i



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u g

u f
   (5.5.11) 

 

For general nonlinear systems, all convergence norms decrease simultaneously as the system 

converges. Particularly, the force norm represents the size of the unbalanced force and has the 

closest relationship with the degree of satisfaction of the nonlinear equation. On the other hand, the 

displacement norm represents the size of the incremental solution and is not appropriate as a single 

convergence norm for problems with a very large local stiffness, such as for systems using the penalty 

method.  

 

GTS NX compares a single or multiple norms out of these three norms to the user-provided tolerance 

to determine convergence.  

 

Divergence determination and load bisection 

Determining the divergence for a solution is an important criterion used in automatic tangential 

stiffness update, and the divergence rate iE  is determined fundamentally. 
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u g

u g
    (5.5.12) 

 

When the absolute value of the divergence rate is larger than '1' ( 1iE  ), the nonlinear analysis 

solution is judged to have possible divergence and necessary measures are taken on the algorithm, 

such as recalculation of the stiffness matrix or load bisection. 

 

Load bisection is applied when the increment of the current load step is too large to obtain a 

converging solution, such as when the solution diverges or when the number of required iterative 

calculations is larger than the user defined maximum number etc. By restarting the iterative calculation 

through bisecting the current load increment, an inappropriate load increment size can be dealt with 

flexibly. GTS NX performs load bisection automatically until the user defined maximum bisection level 

is reached. 

 

Automatic time increment adjustment 

To increase the efficiency of nonlinear analysis, GTS NX includes a function that automatically adjusts 

the time increment size as the base of the nonlinear analysis astringency. The fundamental time 

increment size and maximum increment size is determined by the user input. When using the 

automatic time increment adjustment function in nonlinear analysis, the time increment size of a 

particular time step increases or decreases based on the number of iterative calculations needed for 

convergence in the previous increment step.  

 
1

,max(1 )i i

s s st n t n n        (5.5.13) 

 

Here, the increment adjustment factor ( sn ) is limited to natural numbers to obtain the maximum 

number of nonlinear solutions in the user intended point or load size. The increment adjustment factor 

has a range from the minimum value '1' representing the initial increment, and the maximum value 

( ,maxsn ) provided by the user. 

 

Quasi-Newton method 

The quasi-Newton method is a type of nonlinear solution is the generalized form of the secant method. 

It maintains the advantages of the Modified Newton Raphson method, which recomposes the stiffness 

matrix only when a load increment is present, and improves the problem of low astringency. In other 

words, costs do not occur for recomposition during iterative calculation of the stiffness matrix and 

effective calculation using the decomposed stiffness is possible. At the same time, this method can be 

used to improve the astringency and general performance.   
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GTS NX uses the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method 6 , a type of quasi-Newton 

method. The inverse matrix of the stiffness matrix from iterative calculations in nonlinear finite element 

analysis is adjusted by the following BFGS update process.  

 
1 1

1

T T

j j j j j j jz 

 K Γ K Γ δ δ    (5.5.14) 

 

Here, j represents the BFGS update index, and matrix jΓ  and scalar jz  can de expressed as 

follows. 
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j T

j j

z

z

 



Γ I γ δ

δ γ

    (5.5.15) 

 

Also, the quasi-Newton vectors jδ  and jγ  are expressed using the increment solution iu , which 

applies the line search factor   from the i th iterative calculation, and the difference between 

unbalanced forces during iterative calculation as follows. 

 

1

1

j i i i

j i i





   

 

δ u u u

γ g g
   (5.5.16) 

 

The i th incremental solution during iterative calculations is calculated using the j th BFGS updated 

stiffness matrix and unbalanced forces, as shown below: 

 
1 1 1 1 1

1

i i T i T i

j j j j j j jz     

  u K g Γ K Γ g δ δ g   (5.5.17) 

 

The inverse matrix of the stiffness matrix is not actually modified by the BFGS update process; the 

incremental solution is calculated during iterative calculations using a recursive method. In other words, 

it maintains the decomposed form of the initial stiffness matrix with no BFGS updates. The incremental 

solution can be found using simple recursive vector operations. The quasi-Newton vector is saved for 

these operations. The saved vector is erased when incremental analysis converges and the stiffness 

matrix is recomposed. 

 

Arc-length method 

Figure 5.5.3 displays the various displacement load paths, including the unstable equilibrium path. 

When performing static nonlinear analysis for these phenomena, analysis of the unstable static 

equilibrium state after the limit point cannot be performed when the general load controlled nonlinear 

                                                                 
6 Matthies, H. and Strang, G., “The solution of nonlinear finite element equations,” International Journal for Numerical 

Methods in Engineering, Vol. 14, Issue 11, pp. 1613-1626, 1979 
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solution is used. In other words, general nonlinear solutions cannot find the converging solution after 

the limit point. When using the displacement controlled method, the analyzable region increases 

locally, but this is not a general solution and tracing is impossible for the snap-back phenomenon. In 

this case, the arc-length method can be used. The arc-length method can successfully trace the 

equilibrium path even when the static equilibrium state includes an unstable region.  

 

 
 

The external forces in the arc-length method are assumed to be proportional to the load parameter  , 

which is an independent scalar variable. Hence, the arc-length method can be seen to increase the 

DOF of the fundamental finite element problem by '1'. However, because the algorithm is composed 

such that the parameter   and accumulated incremental solution satisfy the arc-length constraint, the 

final number of DOF is maintained. The unbalanced forces including the load parameter can be 

expressed as follows: 

 

,( , )i i i i ext int i  g u f f    (5.5.18) 

 

Here, linearizing the condition that the unbalanced forces that occur at the 1i  th iterative calculations 

due to the incremental solution 1i u  and incremental load parameter 1i   is 0. The relationship 

between the incremental solution and incremental load parameter can be obtained as follows:  

 
1

1 1 1( )i i i i ext 

   u K g f     (5.5.19) 

 

Using this, the accumulated incremental solution at the 1i  th iterative calculation is as follows: 
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Figure 5.5.3 Various unstable 
equilibrium paths 
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1 1i i i T      u u u u     (5.5.20) 

1

1i i 

u K g  : Incremental solution for unbalanced force 

1

1T i ext



u K f  : Displacement generated for total external force 

 

GTS NX uses the Crisfield, Riks, or Modified Riks method arc-length constraints. The Crisfield 

method7 is used as the default arc-length constraint:  

 
2

1 1

T

i i l    u u     (5.5.21) 

l  : Arc-length 

 

The incremental load parameter 1i  can be calculated from the equation above, and substituting this 

can calculate the 1i  th iterative calculation solution. Like the general nonlinear solution, this process 

is repeated until the user specified convergence criteria is satisfied and the convergence criteria are 

the same as that of the general nonlinear solution. In other words, convergence is judged using the 

change in member force, displacement, or energy.  

 

When using the arc-length method, accurate load state calculation can be difficult because the load 

increment is determined by the arc-length constraint condition and cannot be controlled by the user. 

Hence, the applicable range of the arc-length method is limited to problems that need tracing of the 

unstable equilibrium state. No additional advantages exist for general nonlinear problems. 

 

Over-relaxation method 

 

The over-relaxation method is one of the methods to improve the convergence rate by multiplying the 

estimated unbalance force by the coefficient at the iterative calculation. 

 

Although it is a basic approach rather than a line search method, it is a method that is very similar to 

the initial stiffness method because the formula is very simple and unlike the line search method, the 

additional analysis time is required in the iterative calculation. 

 

 1 1e i e i i     K u K u r u                                      (5.5.22) 

 

Where ω is the excess relaxation coefficient. 

                                                                 
7 Crisfield, M.A., “An arc-length method including line searches and accelerations,” International Journal for Numerical 

Methods in Engineering, Vol. 19, Issue 9, pp 1269-1289, 1983 
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The initial relaxation coefficient is directly input by the user, 1.2 is defined as the default value, and 

should not exceed 2.0 at maximum. 

 

Enhanced predictor 

 

The initial displacement estimation method is a method of predicting the initial displacement at the 

present stage using the load factor ratio taken from the present stage divided by previous stage and 

multiplied by the displacement result of the previous stage as shown in the following equation. 

 

1

1

predictor n
n n

n









  


u u                                                 (5.5.23) 

 

The estimated displacements do not exactly coincide with those of the current step, but they are useful 

for iterative calculations because they predict closer results than the displacements estimated by 

elastic stiffness. 

 

Particularly, it is more effective when the material model has a large plasticity. However, because it is 

less accurate than the estimated tangent stiffness by Newton-Raphson, it is recommended to use it 

with the initial stiffness method. 

 

In general, the initial stiffness method is a stable method for solving the problem.   

 

Figure 5.5.4 Over-relaxation 
method 
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Figure 5.5.5 Estimation of 
Initial Deformation (enhanced 
predictor) 
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Strain/Stress Measurement 
Considering Large Deformation 

For geometric linear analysis, the strain and stress are defined without considering the shape 

difference before and after deformation. The strain in geometric linear analysis is generally defined as 

follows: 

 

1
[ ( ) ]

2

T 
 

 

u u
ε

X X
    (5.6.1) 

u  : Displacement 

X  : Coordinates before or after deformation 

 

For geometric nonlinear analysis that considers large deformation, the strain can be defined using 

various methods and a corresponding stress exists for each strain to define virtual work.  

 

Definition of strain 

Strains that consider large deformations include Green strain, Green-Lagrange strain and rate of 

deformation or strain rate. The Green strain tensor E  is defined as follows: 

 
2 2 2ds dS d d   X E X    (5.6.2) 

X  : Coordinates of a particular position on the structure before deformation  

 

The Green strain can be seen as the difference between the squared value of the differential length 

before deformation dS  and after deformation ds . The Green strain tensor can be defined using the 

deformation gradient as follows: 

 

1
( )

2

T  E F F I     (5.6.3) 

 

If only rigid motion occurs, Green strain does not occur and it is appropriate as a measurement of 

deformation. 

 

The rate of deformation D is defined by the velocity gradient as follows: 

 

Section 6 
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1
( ) [ ]

2

T sym


  


v
D L L

x
   (5.6.4) 

v  : Velocity vector 

X  : Coordinates of a particular position on the structure before deformation 

 

In other words, it corresponds to the symmetric part of the velocity gradient tensor. The rate of 

deformation can be seen as a value for the squared differential length. 

 
2

2
ds

d d
t


  


x D x     (5.6.5) 

 

The rate of deformation also does not occur when only rigid motion exists, and it has the following 

relationship with the Green strain: 

 
1T   D F E F     (5.6.6) 

 

Because the rate of deformation is a rate of change with time, it is generally time integrated and used 

as a strain. If analysis that considers geometric nonlinearity of a material is performed in GTS, NX the 

strain is computed by time integrating the rate of deformation. GTS NX uses the rate of deformation or 

strain rate. 

 

Definition of stress 

When geometric deformation is large, the stress can also be defined using various methods. GTS NX 

uses the Cauchy stress. 

 

Because Cauchy stress is a value that satisfies the equilibrium equation of the current shape, it is also 

known as true stress σ  and is defined as follows: 

 

d d d     n σ f t     (5.6.7) 

 

The Cauchy stress of the shape before deformation can be converted to the 2nd PK stress (Piola-

Kirchhoff: S ) as follows: 

 
1 TJ    S F σ F     (5.6.8) 
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The physical meaning of 2nd PK stress is not clear, but it is useful in describing the equation of motion 

when coupled with the Green strain and so it is often used to define the behavior or materials with an 

energy potential such as rubber. GTS NX uses the following stress and strain integration method for 

all materials: 

 

Stress rate and strain rate integration  

Elasto-plastic materials, viscoelastic materials etc. do not have energy potential, but use a constitutive 

relationship consisting of the strain rate and objective stress rate. The Jaumann stress rate used is 

defined as follows: 

 
J T    σ σ w σ σ w    (5.6.9) 

 

Strain rate and objective stress rate have the following relationship from the constitutive equation of 

the material: 

 

:J σ C D     (5.6.10) 

 

Reflecting the central difference and considering the structural rotation in equation (5.6.10), the 

equation that calculates the stress at step 1n  using the stress and strain increments calculated at 

step n : 

 

1 :T

n n      σ R σ R C ε    (5.6.11) 
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deformation and force direction 
for defining stress 
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The rotation amount increment R  is calculated as follows8 to satisfy the incrementally objective 

stress condition. 

 

11 1
( ) ( )

2 2

     R I W I W     (5.6.12) 

 

Particularly, the strain increment and incremental spin calculation is performed on the 1/ 2n  shape.  

 

1/2 1/2 1/2 1/2

1 1
( [ ] ), ( [ ] )

2 2

T T

n n n n   

   
     
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u u u u
ε w

x x x x
  (5.6.13) 

 

The strain rate integral is also calculated using equation (5.6.11) and uses the structural rotation 

amount increment R . 

 

  

                                                                 
8 Hughes, T.J.R. and Winget, J., “Finite rotation effects in numerical integration of rate constitutive equations arising in 

large deformation analysis,” International Journal for Numerical Methods in Engineering, Vol. 15, 1980 
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Nonlinear Dynamic Response  

GTS NX supports nonlinear time history analysis that includes geometric, material nonlinearity and it is 

based on implicit time integration. 

 

The dynamic equilibrium equation in nonlinear time history analysis uses the HHT   method as 

implicit time integration, just like for linear time history analysis, and uses the following modified 

equilibrium equation. 

 

 1 1 int, 1 , 1 int, ,(1 )n n n ext n n n ext n

H H
t

    
             

Mv Cv f f Cv f f 0   (5.7.1) 

 

In nonlinear time history analysis, the effects of the mass matrix rotation due to geometric nonlinearity 

are considered. The rotational inertia part of the mass matrix is modified for each iterative calculation, 

according to the finite rotation of the nodes, and the inertial force generated from the rate of change of 

the mass matrix is considered in analysis. 

 

Nonlinear time history analysis calculates the convergence solution for each time step using the 

nonlinear finite element solution in section 5.5. The unbalanced forces are expressed from equation 

(5.7.1) as follows: 

 

 1 1 1 1 int, 1 , 1 1 int, ,

1 (1 )n n n n n ext n n n n ext n

n H H
t

       




             

g M v C v f f C v f f  (5.7.2) 

 

The tangential stiffness matrix can be found by applying the time step equation (5.4.3), from the 

Newmark method for velocity and acceleration, onto the unbalanced force and differentiating for the 

displacement DOF, as follows: 

 
int, 1 , 1

1 1 1

2

(1 )1
(1 ) (1 )
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n n nH
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t t t
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  

 
    

      
    

f f
A M M C

u u
 (5.7.3) 

 

Here, 0.05H   is used as the default value, just like linear time history analysis. Also, to secure 

unconditional stability, the following values are used : (1 2 ) / 2H   , 
2(1 ) / 4H    

 

Angular velocity and angular acceleration  

When considering geometric nonlinearity in nonlinear time history analysis, the angular velocity and 

angular acceleration need to be updated by reflecting the effects of body axis system rotation. Defining 

Section 7 

7.1 
Implicit Time 

Integration  
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the body axis system where finite rotation occurs as  , the Newmark time step equation in the 

coordinate system of the body axis system is as follows: 

 
1 1 (1 )n n n nt          ω ω α α    (5.7.4) 

ω ,
α  : Angular velocity and angular acceleration about the body axis system   

 

Using the base vector perpendicular to the body axis system e , the equation above can be expressed 

for the GCS. 

 

 1 1 1 (1 )n n n n n nt t           ω α e e ω α    (5.7.5) 

 

The product of the perpendicular base vectors in equation (5.7.5) is the same as the incremental 

rotation matrix found below: 

 

ˆexp( )  C     (5.7.6) 

̂  : Skew symmetric matrix for the rotation amount increment 

 

The rotation amount increment can be expressed by the Newmark method using the incremental 

rotation matrix, as shown below. 

 

2 1 2 1

2

n n nt t t    
          

  
θ α C ω α   (5.7.7) 

 

Rearranging equation (5.7.7) for angular velocity and angular acceleration respectively and 

substituting into equation (5.7.5) gives the following updating equations for both angular velocity and 

angular acceleration. 
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  (5.7.8) 
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Damping effect 

Mass proportional damping and stiffness proportional damping are also considered in nonlinear time 

history analysis, just like linear time history analysis. In this case, the damping matrix is composed 

similarly to equation (5.4.5). The mass matrix, which is used to calculate the damping matrix in 

nonlinear time history analysis, considers the rotational effects due to finite rotations and the stiffness 

matrix only uses the stiffness matrix due to material nonlinearity. 

 

,

e e e e

j j j mat j   C M K B    (5.7.9) 

matK  : Stiffness matrix due to material nonlinearity 

 

  



 

 

Section 8. Contact Condition | 267 

ANALYSIS REFERENCE Chapter 5. Algorithm 

Contact Condition  

Contact analysis fundamentally assumes that two objects in a space can be in contact, but cannot 

penetrate each other (non-penetration condition), and is nonlinear in behavior or in condition from a 

physical point of view. The type of contacts are general contact (considers the impact and impact 

friction between two objects in analysis) and rough contact (does not consider sliding) shown in figure 

5.8.1, and welded contact (two objects are welded from the start of analysis) shown in figure 5.8.2. 

Here, the welded contact is assigned depending on the position of two objects at the start of analysis 

and can be seen as linear. 

 

 
 

 
  

Rough contact
General contact

Welded contact

Section 8 

Figure 5.8.1 Concept of general 
contact and rough contact 

Figure 5.8.2 Concept of welded 
contact  
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Relationship between contact condition and analysis type  

The contact condition can be used for initially adjacent bodies in structural analysis, consolidation 

analysis and seepage analysis.  

 

The contact can be classified with the node-to-surface contact, or surface-to-surface contact. Node-to-

surface contact takes less time, but the solution accuracy is relatively low because the nodes of the 

main object tend to penetrate through the sub object. On the other hand, surface-to-surface contact 

takes longer but the non-penetrating conditions are satisfied relatively accurately, allowing the 

accurate simulation of the structural behavior. GTS NX supports the surface-to-surface contact. 

 

The general contact can be used in nonlinear structural analysis (static, dynamic) and consolidation 

analysis. The general contact corresponds to the nonlinear condition, and its behavior is different 

according to the geometric nonlinearity consideration in terms of analysis techniques. In case of 

considering geometric nonlinearity, the possibility of contact is considered for all master segments 

under the assumption of large displacement. On the other hand, only the contact closed to within initial 

user-defined distance between master segment and slave node is considered. 

 

Contact plane search 

Contact search uses the slave node/master segment algorithm. This algorithm determines contact by 

the adjacency between the slave node and master segment, or how much the slave node penetrates 

the master segment. Generally, the order of the slave node defined object and master segment 

defined object does not matter. But from a numerical point of view, the master segment needs to be 

defined on the object with a relatively larger stiffness, or relatively element-sparse object, to obtain 

more accurate analysis results.  

 

To determine the actual contact of the slave node and master segment, the global search process is 

conducted. Global search is the process that determines the preliminary slave nodes where objects or 

segments can collide in space. Contact search is performed locally for the slave node and master 

segment sets determined by global search. 

 

To determine whether nodes and planes are actually in contact, the slave nodes need to be projected 

orthogonally on the master segment as shown in figure 5.8.3. Defining vector r  from the origin to the 

projected point (A), and vector sx  from the origin to the slave node gives the following equation:  
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    (5.8.1) 

 

Here,  ,c c  is the position of contact point (A) on the master segment, expressed in the natural 

coordinate system. The  ,c c   that satisfies the equation above can be calculated numerically using 
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the Newton-Raphson method. The coordinate increment  ,c c    for applying the Newton-Raphson 

method is as follows: 
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       

r r

r r
r x

r r
  (5.8.2) 

 

Using the initial condition as    , 0,0c c   , the equation above converges easily when the position of 

contact point (A) or slave node (B) is not far from the master segment. If the next slave node is 

checked and determined to have penetrated the contact plane, the force (contact force) proportional to 

the penetration depth is added to the slave node and contact plane. 

 

 
 

Calculation of contact force 

The displacement relationship between the slave node and master segment, which are determined to 

be in contact, is confined using the penalty method. In GTS NX, the gap and contact force is defined 

using the following equations (5.8.3), (5.8.4): 

 

 B A A

Ng   x x n      (5.8.3) 

0C

N N Nf k g if g       (5.8.4) 

nk  : Penalty coefficient 

,A B
x x  : Position vectors of point (A) on master segment and slave node (B) 

A
n  : Normal vector of point (A) on master segment 
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Figure 5.8.3 Normal 
relationship between slave 
node and master segment 
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The penalty coefficient Nk  has the effect of applying an elastic stiffness between the master segment 

and slave node, and the non-penetrated condition is satisfied approximately depending on the size. 

For the welded condition or the sliding contact condition, the contact force is assigned even when Ng  

is positive and the initially adjacent segment and slave nodes are not separated and its effects 

reflected. GTS NX automatically calculates the penalty coefficient using the following equation (5.8.5): 

 

plane/shell elements :

solid elements :

s i
i si

s i
i si

f M
k A

h

f K
k A

h





   (5.8.5) 

sf  : Proportionality coefficient 

iK  : Bulk modulus 

iM  : Coefficient of expansion 

iA  : Area 

iV  : Volume 

h  : Length of master segment 1 21 1
solid : plane/shell :

n n
mi

mi

i imi

V
A

n A n
   

 

The proportionality coefficient sf  above is determined differently depending on the analysis type or 

contact condition type, and the user can modify it to effectively satisfy the non-penetrated condition or 

welded condition. For the welded condition, a resistant force against sliding in the lateral direction of 

the contact plane is assigned and its size is as follows: 

 

 

 

B A A

x

T
B A A

y

   
  

   

u u t
g

u u t
    (5.8.6) 

T

T Tkf g      (5.8.7) 

Tk  : Penalty coefficient 

,A A

x yt t  : Lateral vector of point (A) on master segment  

 

For the welded condition, the penalty coefficient Tk  uses the same value as Nk . 

 

As equation (5.8.4.) and (5.8.7), the contact force of linear elasticity or resistance force for sliding is 

not suitable for the general contact used in nonlinear analysis. In order to obtain the convergence, 

much oscillation can be occurred because the stiffness of general contact rapidly changes from 0 to 
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Nk  according to the sign of gap. To compensate for this, GTS NX uses the modified contact force as 

follows: 

 

 (5.8.8) 

 

 
 

There exists more complex nonlinearity in the resistance force against horizontal sliding because this 

force occurs only if the vertical force is applied. As a result, the equation (5.8.7) is modified and 

applied as follows: 

 

2

C
T T

T

N

k f

k d
f g     (5.8.9) 

 

In the above equation, the discontinuity of force which may occur at the moment of contact suddenly 

disappeared can be minimized by proportion to the vertical contact force and horizontal force. In case 

of general contact, the friction can be considered additionally. 

 

0T Cf f  f    (5.8.10) 

  : Friction coefficient 
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Figure 5.8.4 Relation between 
gap and modified contact force 
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The behavior which satisfied with the above equation becomes elastic movement, and if it does not 

satisfy the above equation due to the large horizontal movement, sliding occurs. When you compare 

(5.8.9) and (5.8.10), the horizontal relative displacement within certain distance 2d  shows elastic 

movement, and the more relative displacement can be seen that the slip is assumed. As the general 

contact considering friction creates an asymmetric stiffness matrix, numerical calculated efficiency is 

significantly inhibited. Also, the large friction coefficient (over 0.3~0.4) or horizontal elastic modulus 

Tk  can be the factors causing convergence problem. 
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Slope Stability Solution 

Slope stability for an embankment or excavation is one of the most frequently dealt problems in 

geotechnical engineering. The slope always has a self-weight potential energy due to gravity and if 

external forces such as pore pressure, applied load, earthquake, wave force etc. act on the slope, its 

stability is greatly affected. Here, slope failure can occur when the active force of the slope is greater 

than the resistant force of the soil. Slope stability analysis evaluates the stability against failure using 

the relationship between the active force and resistant force of the slope. 

 

The widely used limit equilibrium method can only evaluate the stability for the basic given conditions. 

However, the actual collapse of the ground generates a large local deformation and fails at the limit. 

Hence, establishing an analysis method that can trace the deformed shape continuously from the 

initial deformation to collapse is important for stability analysis of the ground. Recently, active research 

is ongoing to apply finite element method as a method of evaluating stability such as slope failure, 

using the strengths of finite elements such as the ease in checking the deformed shape, even at 

various load and boundary conditions.  
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Figure 5.9.1 Slope failure 
process 
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The following slope stability analysis methods have been suggested. 

 

► Mass procedure and slice method according to the limit equilibrium theory 

► Limit theory according to the rigid-plastic theory 

► Finite element method according to the elasto-plastic theory 

 

In GTS NX, the usable slope stability analysis methods that use the finite element method are the 

strength reduction method and the stress analysis method based on the limit equilibrium theory. 

 

Slope stability analysis using the finite element method are detailed approximate solutions that satisfy 

all the equilibrium force conditions, compatibility conditions, constitutive equations and boundary 

conditions of each point on the slope. This numerical analysis method can simulate nearly actual 

failure shapes, reflect the field conditions better and can analyze the minimum safety factor and failure 

behavior of the slope in detail. Particularly, the failure process is automatically simulated without any 

assumptions made to the failure plane of the slope.9 

 

The strength reduction method (a slope stability analysis method based on the finite element method) 

gradually decreases the shear strength and performs analysis until the point where the calculation 

does not converge. This point is considered to be the failure point of the slope, and the maximum 

strength reduction ratio at this point is thought of as the minimum safety factor of the slope. This 

method is costly because it requires multiple nonlinear analyses, but it can provide more accurate 

results in a reasonable time for improved data processing speeds. Also, the strength reduction method 

can verify the deformation process from the initial slope to failure without any required assumptions for 

the failure plane. 

 

Strength reduction theory 

To simulate slope failure using the strength reduction method, the safety factor is computed at an 

arbitrary point where the Mohr circle is in contact with the failure envelope, as shown in the figure 

below. The stress state at this point can be determined as the failure state and when this failure point 

increases, overall slope collapse occurs. The finite element analysis at this limit state diverges, and 

the safety factor at this point is defined as the minimum safety factor. 

 

  

                                                                 
9 Griffiths, D.V. and Lane, P.A. (1999). Slope Stability Analysis by Finite Elements, Geotechnique, 49(3), 387-403 

9.1 
Strength Reduction 

Method 
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Calculation of minimum safety factor 

The material models used in the strength reduction method are Mohr Coulomb, Drucker Prager and 

Modified Mohr Coulomb. For the input variables used here, all variables are assumed to have a 

constant value except cohesion, friction angle and dilatency angle, which determine shear failure. The 

cohesion, friction angle and dilatency angle corresponding to ground elements (plane strain, 

axisymetric, solid) are gradually decreased and the safety factor 
sF at slope failure is computed. 

 

s

f

F



      (5.9.1) 

 

Here,   is the shear strength of the slope material, and can be expressed using the Mohr-Coulomb 

criteria as follows: 

 

tannc        (5.9.2) 

 

Also, f  is the shear stress of the active plane and can be calculated as follows: 

 

tanf f n fc        (5.9.3) 

SRF
f

c
c   : Shear strength factor (Cohesion) 

1 tan
tan

SRF
f


   

  
 

 : Shear strength factor (Friction angle) 

SRF : Strength reduction factor 

 

Figure 5.9.2 Strength reduction 
method 
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For the strength reduction method, the SRF value just before the non-convergence is evaluated as the 

safety factor. Hence, the safety factor can be slightly different depending on the user input number of 

convergence and convergence criteria.  

Other material models can be included for slope safety analysis, but the strength reduction is not 

applied to these models. 

 

Strength reduction using the arc-length method 

The main difference between the existing strength reduction method and the method using the arc-

length method is the method of increasing/decreasing the safety factor, which is the standard for 

strength reduction. The existing method computes the safety factor of the next step by controlling the 

safety factor of the current step by the user defined increment. Hence, ineffective calculation is 

performed for very stable models or unstable models without the engineer's judgment because the 

uniform safety factor is incremented. However, using the arc-length method, the arc length is 

computed by the convergence speed of the previous step and thus a more appropriate safety factor 

increment can be obtained. 

Defining the projected stress on the new failure plane caused by the strength decrease of the in-situ 

stress state 0σ  as 1σ , and introducing an additional arc-length parameter  to apply the arc-length 

method, the stress within the element can be assumed as follows:  

 

0 1(1 )    σ σ σ σ    (5.9.4) 

 

Here, σ is the stress component corresponding to  that is needed to maintain the equilibrium with 

the external forces on the failure plane.  

 





0σ

1σ

ALf

newσσ

 0fos  

 1fos  

 0 1fos  

 
 

Using equation (5.9.4), the unbalanced forces of the i th iterative calculation for nonlinear analysis can 

be expressed as a function of the DOF vector and arc-length parameter: 

 

 0 1( , ) (1 )
e

T

i i i ext

e

d  


     g u f B σ σ σ    (5.9.5) 

 

Figure 5.9.3 Arc-length load 
vector and stress flow diagram 
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The external force including self weight ( extf ) does not change with  . This method is different from 

the general arc-length method for unstable equilibrium state analysis in that the internal forces change 

with the stress assumption in equation (5.9.4). To apply the Newton-Raphson based nonlinear finite 

element analysis, equation (5.9.4) can be expanded for the incremental solution and increment 

parameters as shown below: 

 

1 1 1 1i i i i i AL       g g K u f 0    (5.9.6) 

1i


 



g
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u
 : Tangential stiffness matrix 

0 1
e e
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e e

d d
  


   


  
g

f B σ B σ  : Arc-length force vector 

 

Using this, the accumulated incremental solution that occurs at the 1i  th iterative calculation is as 

follows: 

 

1 1i i i T      u u u u     (5.9.7) 

1

1i i 

u K g  : Incremental solution for unbalanced force 

1

1T i AL



u K f  : Displacement generated for arc-length load vector 

 

Here, 1i  is calculated using the arc-length constraint condition. The related information is already 

explained in the nonlinear solution section and is hence omitted. This process is repeated until the 

user defined convergence criteria is satisfied. The safety factor of each step can be calculated through 

this process. This subsequent process is also repeated until the rate of change for the safety factor is 

within a certain condition. 

 

force

displacement

extf

nfos

1nfos 

Arc-length

 
 

Figure 5.9.4 Safety factor 
increment for arc-length 
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The limit equilibrium method is one of the most often used slope stability methods for actual design. 

However, this method cannot find the stress history of the actual slope or the change in ground 

behavior. On the other hand, slope stability analysis using the finite element method can consider the 

slope formation process and other ground characteristics, but it requires a longer analysis time 

because it performs multiple nonlinear analyses.  

Recently, much research has been done in this area as to the strengths of the using limit equilibrium 

method and finite element based slope stability analysis simultaneously. GTS NX provides the slope 

stability analysis method that uses the finite element stress analysis results. This method is based on 

the virtual sliding surface of the limit equilibrium method and the stress results of stress analysis.  

This method computes the safety factor for multiple assumed virtual sliding surfaces using the stress 

results of finite element analysis, and the minimum safety factor and corresponding critical section is 

computed. The provided ground material models are Mohr Coulomb, Drucker Prager and Modified 

Mohr Coulomb, just like the strength reduction method. 

 

Calculation of minimum safety factor 

The safety factor used in the finite element method is defined as follows: 

 

f
S

s

m
S

d
F

d













    (5.9.8) 

 

Here, m  is the generated shear stress, f  the shear strength, and for Mohr Coulomb materials, it 

can be expressed as follows: 

 

 
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1
sin 2 cos 2

2

f n

m y x xy

c  
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 

  
   (5.9.9) 

 

Here, the directional stress normal to the sliding surface n is as follows: 

 
2 2sin cos sin 2n x y xy            (5.9.10) 

c  : Cohesion 

  : Internal friction angle of the material 

  : Angle between horizontal plane and sliding surface 

x , y  : Normal stress in the x direction and y direction respectively 

xy  : Shear stress 
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Stress Analysis 

Method 
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m
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Stress integration along virtual sliding plane 

To calculate the safety factor, the line integral of stresses along the virtual sliding plane need to be 

performed. For this, the stress value at an arbitrary position is required. The stress is calculated using 

the inner product of the nodal stress and the shape function at that position. 

 
node

node

1

i i

i

σ N σ     (5.9.11) 

iN  : Shape function at node i  

node

i  : Nodal stress at node i  

  : Stress at arbitrary point within the element 

 

Here, the nodal stress is calculated through the stress recovery technique, which uses the nodal 

average method. In other words, GTS NX calculates the nodal stress through extrapolation of the 

integral stresses of each node sharing element, and the final nodal stress for shared nodes is applied 

as the average value of the calculated nodal stresses. 

 

The stress integral along the virtual sliding plane in the 2D GCS is transformed into an integral form in 

1D local coordinate system and calculated using the following equation: 
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L L
x y d d W     




    T T   (5.9.12) 

  : Coordinate variable in local coordinate system 

iW  : Constant of integration at integral point i  

T  : Transformation matrix that transforms stress in the element coordinate system to GCS 

L  : Element length 

Figure 5.9.5 Stress components 
of the slope 
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  : Shear stress m  or shear strength 
f  on virtual sliding plane  

 

The finalized total safety factor for the given virtual sliding plane is as follows: 
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    (5.9.13) 

nel  : Number of elements passing the virtual sliding plane 

1n  : Start point of the virtual sliding plane within the element 

2n  : End point of the virtual sliding plane within the element 

 

The stress analysis method based on the limit equilibrium method uses the stress field computed from 

the finite element method and the virtual sliding surface of the limit equilibrium method. Hence, it has a 

stress distribution and deformed shape from finite element analysis, and is optimized for obtaining the 

critical section from the limit equilibrium method. Compared to the strength reduction method, it 

requires a much shorter analysis time and can accurately compute various ground or reinforcement 

members without any particular assumptions. 
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Equivalent Linear Solution  

Equivalent linear analysis simulates nonlinearly behaving ground according to strain using linear 

analysis. This method simplifies the complex nonlinear ground properties into linear equivalent 

properties for linear analysis. GTS NX supports free field analysis for analyzing the in-situ ground 

behavior before construction. GTS NX also supports 2D equivalent linear analysis for ground-structure 

coupled analysis. 

 

Free field analysis finds the ground response for an input load on the in-situ ground state before any 

construction of structures. Free field analysis is used for ground surface vibration prediction to 

determine the design response spectrum, computation of dynamic stress and strain to evaluate 

liquefaction, and determination of earthquake load that causes ground or structural instability. 

 

Free field analysis finds the ground response due to the vertically transmitted shear waves that pass 

the linear viscoelastic region. The analysis ground consists of multiple strata that are infinite in the 

horizontal direction and a semi-infinite bottom layer as shown in figure 5.10.1. Each stratum is 

homogeneous and assumed to have isotropic material properties. The vibrations in the analysis model 

are caused by shear waves, which penetrate and reflect the model ground vertically, and displacement 

only occurs in the horizontal direction. Hence, the wave equation (5.10.1) needs to be satisfied for all 

strata. 

 
2 2 3

2 2 2
2

u u u
G G

t x x t
 
  

 
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             (5.10.1) 

u  : Horizontal displacement 

  : Mass density 

G  : Shear modulus 

  : Hysteretic damping ratio 
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Representing the displacement function as a harmonic function like equation (5.10.2) and transforming 

equation (5.10.1) into the frequency domain gives the governing equation (5.10.3), and the stress-

displacement relationship is equation (5.10.4). 

 

( , ) ( , ) i tu x t u x e     (5.10.2) 

2
* 2

2
( , ) ( , ) 0G u x u x

x
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
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
    (5.10.3) 

*( , ) ( , )x G u x
x
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




    (5.10.4) 

( , )x   : Shear stress in frequency domain 

*G  : Complex shear modulus 

 

The complex shear modulus above10 uses the following equation suggested by Udaka. 

 

* 2 2(1 2 2 1 )G G i          (5.10.5) 

                                                                 
10 Udaka, Takekazu. (1975). Analysis of Response of Large Embankments to Traveling Base Motions, Department of Civil 

and Environmental Engineering. Berkeley: University of California, p346. 

Figure 5.10.1 Free field 
analysis model 
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The free field ground model is generally expressed as figure 5.10.1 to find the solution of the 1D wave 

transmission equation. The layer boundary number is assigned from the ground surface and 

expressing the response of the m th layer as mu , the response can be represented using the 

following function of the depth mx  from the top part of the m th layer: 

 
* *

( , ) ( ) ( )m m m mik x ik x

m m m mu x A e B e   
     (5.10.6) 

* *
* *( , ) ( ( ) ( ) )m m m mik x ik x

m m m m m mx ik G A e B e    
    (5.10.7) 

*

mk  : Wave number of the m th layer 

mA  : Layer response coefficient of elastic waves transferred upwards in the m th layer 

mB  : Layer response coefficient of elastic waves transferred downwards in the m th layer 

 

The following compatibility condition and force equilibrium condition need to be satisfied at the 

adjacent layer boundaries: 
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  (5.10.8) 

 

Substituting equations (5.10.6) and (5.10.7) into equation (5.10.8) can derive the relationship between 

the coefficients as follows: 
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  (5.10.9) 

 

Rearranging this to derive the relationship between the response coefficients of adjacent ground 

layers gives the following recurrence relationship shown in equation (5.10.10): 
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  (5.10.10) 

mh  : Thickness of m th layer 

*

m  
: Dynamic stiffness ratio between adjacent 

layers 

 

Here, the dynamic stiffness ratio between adjacent layers can be expressed as follows: 
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     (5.10.11) 

 

Because shear stress is always '0' at the ground surface, 1 1A B  can be known from equation 

(5.10.7). Hence, the response coefficient of the m th layer can be found by applying equation (5.10.10) 

in order from the first layer.  
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    (5.10.12) 

 

Here, 1 1 1a b   can be known. The transfer function ( )ij H  between layer boundary i  and layer 

boundary j  is as follows: 
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    (5.10.13) 

 

If the transfer function ( )ijH   is determined and the response ( )ju   at layer boundary j  is given, 

the response ( )iu   at layer boundary i can be found using the following equation: 

 

( ) ( ) ( )i ij ju H u       (5.10.14) 

 

Also, frequency domain response can be inverted to the time domain using the FFT (fast Fourier 

transform) method. 

 

The main difference between ground-structure interaction problems and general structural dynamics 

problems is the radiation damping phenomena due to the infinite ground domain. Whilst general 

damping properties damp the structural motion through material friction, radiation damping releases 

wave energy into the infinite domain of the ground, which contributes to the damping phenomena of 

structural kinetic energy. 

 

Radiation damping is included in the damping term of the equation of motion, and its size is 

determined by the wave form of the externally transmitted wave. The wave form can be easily 

modeled in the frequency domain and it is efficient to consider this using frequency domain solvers. 

General ground materials are fundamentally heterogeneous and the nonlinearity of its mechanical 

behavior is very severe. 

 

To correctly analyze the ground-structure interaction problem, the radiation damping phenomena 

above and important nonlinearity characteristics need to be considered simultaneously. Hence, the 

10.2 
2D Equivalent Linear 

Analysis 
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frequency domain solver is used for easy modeling of radiation damping and the equivalent linear 

method is used to analyze material nonlinearity. 

 

The analysis process uses the frequency domain analysis process that uses FFT (fast Fourier 

transform) and the equation of motion composes a combined ground-structural system that has the 

free field response as the input motion. Hence, the ground response and structural response are 

obtained together for one computation. Interpolation is used to reduce the number of frequencies 

where the solution to the equation of motion needs to be found, and this method uses the interpolation 

of the transfer function solutions of two continuous frequencies. Hence, the setting of basic 

frequencies is important and a sufficiently high limit frequency needs to be defined to secure validity of 

the ground motion analysis. 

 

As mentioned above, the input motion in the time domain can be converted to the frequency domain 

using FFT to calculate the structural response under a vibration load with a constant frequency. All 

loads in frequency response analysis are defined in the frequency domain and are expressed as 

functions of the assigned frequency. In other words, when the angular excitation frequency is  , the 

load in frequency response analysis can be expressed as the following complex harmonic function:  

 

    i tt e f f     (5.10.15) 

 

The corresponding response can also be expressed in the same form: 

 

    i tt e u u     (5.10.16) 

 

Using this, the equation of motion can be expressed in the following form: 

 

   2 i        M C K u f    (5.10.17) 

 

 Using equation (5.10.5) suggested by Udaka, the equation above can be modified and rearranges 

into the following equation: 

 

   2 *      M K u f    (5.10.18) 

* 2 2(1 2 2 1 )i     K K  : Complex stiffness coefficient 

 

Energy transmitting boundary 

It is difficult to model the nearly infinite ground accurately using the 2D model used for ground-

structure analysis. Hence, the model boundary needs to be set at an engineering appropriate position 

and the set boundaries need to be processed to simulate actual site conditions. 
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GTS NX uses the energy transmitting boundary suggested by Lysmerand Wass11 to express the load 

( )f  in equation (5.10.18) as follows: 

 
*( ) ( ) ( )( ( ) ( ))f f f      f K u R L u u    (5.10.19) 

( )f u  : Free field analysis displacement of the transmit boundary 

*

fK  : Complex stiffness matrix of the transmit boundary 

R  : Stiffness matrix of the right transmit boundary 

L  : Stiffness matrix of the left transmit boundary 

 

Direct frequency response analysis 

When using the direct solver for direct frequency response analysis, solving the simultaneous equation 

(5.10.18) gives the frequency response  u . The solution can be found accurately using the direct 

method, but calculation is very inefficient for large problems or when many frequencies exist because 

the simultaneous equation needs to be recomposed and solved for each frequency. To supplement 

this, efficient analysis can be performed by interpolation using the transfer function. 

 

Enforced motion 

The input motion of equivalent linear analysis is generally earthquake loading. GTS NX performs 

analysis that use enforced motion. First, the equilibrium equation (5.10.17) is separated into DOFs 

with and without enforced motion. 

 

11 12 1 11 12 1 11 12 1 1

21 22 2 21 22 2 21 22 2 2

             
              

             

M M u C C u K K u f

M M u C C u K K u f
  (5.10.20) 

 

 

 

 

 

 

 

 

 

Separating the unconfined DOF displacement 1u  into the following quasi-static displacement 1

qs
u  and 

dynamic relative displacement y  is as follows: 

 

                                                                 
11 Lysmer, J. and Wass, G. (1972). Shear waves in plane infinite structures. Proc. ASCE, Vol. 98, EM1, pp. 85-105. 

1u  : Displacement of unconfined DOF 

2u  : Displacement of DOF confined by enforced motion 

1f  : Load acting on unconfined DOF 

2f  : Confining force of DOF confined by enforced motion 
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1 1

1 1

1 1

qs

qs

qs

 

 

 

u u y

u u y

u u y

    (5.10.21) 

 

The quasi-static displacement, velocity, and acceleration can be calculated using the following 

equations: 

 
1

1 11 12 2

1

1 11 12 2

1

1 11 12 2

qs

qs

qs







 

 

 

u K K u

u K K u

u K K u

       (5.10.22) 

 

Dynamic relative displacement, relative velocity, and relative acceleration are expressed as follows: 

 

1 1

1 1

1 1

qs

qs

qs

 

 

 

y u u

y u u

y u u

    (5.10.23) 

 

Also, frequency domain analysis results can be found by inverting to the time domain using the FFT 

(fast Fourier transform) method. 
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