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Elastic Material Properties 

Elastic materials return to their original state after the external load is removed without any permanent 

deformation. GTS NX includes various linear elastic and nonlinear elastic material models. The 

properties of each material model are explained in this chapter. Table 4.1.1 lists the available elastic 

materials for each element. 
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Linear Elastic Isotropic ∨ ∨  ∨ ∨ ∨ ∨ ∨ ∨ 

Linear Elastic 

2D Orthotropic 
   ∨ ∨ ∨    

Linear Elastic 

Transversely Isotropic 
    ∨ ∨ ∨ ∨ ∨ 

Interface Elastic   ∨       

Nonlinear Elastic (1D) ∨         

Jardine       ∨ ∨ ∨ 

D-Min       ∨ ∨ ∨ 

Hyperbolic 

(Duncan-Chang) 
      ∨ ∨ ∨ 

 

Isotropic materials have the same properties in any arbitrary direction. Linear elastic isotropic materials 

based on Hooke's law can be used on all elements, excluding some special elements. Using the 

modulus of elasticity E , Poisson's ratio   and coefficient of thermal expansion , the stress-strain 

relationship for 3D isotropic materials can be expressed as follows:  

 

  

Section 1 

Table 4.1.1 Available elastic 
materials for each element type 

1.1 
Isotropic Materials 
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(4.1.1) 

 

For 2D analysis, 0yz zx yz zx       and particularly for plane strain analysis, 0zz  .  
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   (4.1.2) 

 

As  approaches 0.5, the  1 2 2 term approaches‘0 (zero)’, and this can cause numerical errors. 

Hence, the range of Poisson's ratio for isotropic materials is restricted as follows: 

 

1.0 0.5       (4.1.3) 

 

Increase in modulus of elasticity with height 

The change in modulus of elasticity with height can be simulated. If the change is ‘0 (zero)’, a constant 

modulus of elasticity is used, and if it is not ‘0 (zero)’, the modulus of elasticity with reference to a 

certain height can be calculated as follows: 
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 

             

                                    

ref ref inc ref

ref ref
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E E y y

   

 
  (4.1.4) 

refE
 : Input modulus of elasticity 

incE
 : Incremental slope of modulus of elasticity 

refy  : Depth where
refE is measured 
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The y  in equation (4.1.4) represents the position of the integral point where the element calculation 

occurs for the current finite element method. If the integral point y  is positioned higher than 
refy , the 

modulus of elasticity can have a negative(-) value and so, the 
refE  is used as the minimum value for 

modulus of elasticity E . 

 

Orthotropic material is one that has different material properties or strengths in different orthogonal 

directions. The structure is geometrically orthotropic with significant different stiffness in horizontal and 

vertical direction. It is known that the axial stiffness in vertical direction is larger than the effective 

stiffness in horizontal direction. The stress-strain relationship for 3D orthotropic material can be 

expressed as follows: 
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 (4.1.5) 

 

  

Figure 4.1.1 Conceptual 
diagram for incremental 
modulus of elasticity 

1.2 
2D Orthotropic Materials 
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The stress-strain relationship for 2D orthotropic material is as follows: 
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  (4.1.6) 

 

The stress-strain relationship for shear in horizontal direction is as follows: 
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In case of orthotropic material, the following properties should be satisfied. 
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12 21 23 32 31 13 21 32 131 2 0                (4.1.9) 

 

Transversely isotropic materials are material models defined by the isotropic cross-section and the 

axis perpendicular to it. The axis perpendicular to the cross-section displays symmetric physical 

behavior. Hence, the physical properties are the same within the cross-section and different in the 

perpendicular direction. Transversely isotropic materials display different physical properties (Modulus 

of elasticity, Poisson's ratio, Shear modulus) in each perpendicular direction. 

 

► out-of-plane cross-sectional properties : 
1E ,  12 13  ,  12 13G G  

► in-plane cross-sectional properties :  2 3E E
, 23

, 23G
 

 

Here, 
1E  is the modulus of elasticity of the perpendicular axis to the cross-section, and 

12 , 
13  and 

12G , 
13G  are the Poisson's ratio and shear modulus respectively in the plane created by the 

perpendicular axis and other axes of the cross-section. However, because the physical properties are 

axisymmetric about the perpendicular axis to the cross-section, 
12 13  , 

12 13G G . 
2E and 

3E
 
are 

the modulus of elasticity for each axis of the cross-section, 
23 is the Poisson's ratio and 

23G is the 

shear modulus. Likewise, because the material is isotropic in the horizontal direction,
2 3E E . 

On the other hand, transversely isotropic materials and the out-of-plane Poisson's ratio have the 

following relationship: 
12 1 21 2/ /E E  , 

13 1 31 2/ /E E  . In other words, 
12 and 

21 need to be 

distinguished when defining the transversely isotropic material properties.  

1.3 
Transversely Isotropic 

Materials 
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MCS / local coordinate system 

GTS NX has a local coordinate system defined by the dip angle within the MCS to simulate the slope 

of the transversely isotropic material model. However, whilst the behavior of transversely isotropic 

material models is defined by the local coordinate system, the constitutive equation is expressed in the 

MCS. Hence, coordinate system conversion is needed for the constitutive equation between the local 

coordinate system and MCS using the dip angle (Detailed information on this is continued in the 

Constitutive equation and coordinate system conversion and Defining interface direction). 

 

Figure 4.1.2 displays the 2D model where the MCS Z axis and the x  axis (tangent direction of the 

local coordinate system) have an angle . 
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Constitutive equation and coordinate system conversion 

The 3D elastic constitutive equation for the local coordinate axis x y z    is equation (4.1.10). 
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 (4.1.5) 

 

Figure 4.1.2 2D transversely 
isotropic material model 
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Generally, the MCS XYZ and local coordinate system x y z   are not the same. Because equation 

(4.1.10) is the constitutive equation corresponding to the local coordinate system, the stiffness matrix 

of the local coordinate system needs to be converted to the MCS stiffness matrix using the normalized 

direction vector of the local coordinate system in the MCS. The following equations (4.1.11) and 

(4.1.12) are the coordinate system conversion equations for stress and strain respectively: 

 

x y z XYZ   σ R σ     (4.1.11) 

x y z XYZ   ε R ε     (4.1.12) 
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  (4.1.14) 

 

 , ,X Y Zn n nn ,  , ,X Y Zs s ss ,  , ,X Y Zt t tt  are the normalized direction vectors of the x , y , z

axis respectively in the MCS XYZ . For 2D problems, 0Z Z X Yn s t t    , 1Zt   . 

On the other hand, the following equation is established between the two conversion matrices R
, R

. 

 
T T

   

  R R R R    (4.1.15) 

 

Using this, the stress strain relationship equation in the local coordinate system can be expressed as 

the MCS stress and strain as follows: 
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  (4.1.16) 

 

Rearranging the equation above gives the constitutive equation of the MCS XYZ  , as shown in 

equation (4.1.17). 
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Defining interface direction  

The axial direction vectors n , s , t of the local coordinate system x y z   defined in the MCS XYZ  are 

defined by the dip angle
1 and dip direction 

2 . Figure 4.1.3 displays the definition of the two angles. 
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1 is the angle between the MCS Z  axis and the sliding plane corresponding to the y z  plane of 

the local coordinate system with reference to the Y axis, and 
2  is the angle of rotation for the 'y  

axis of the sliding plane in the Z  axis direction, with reference to the N  axis of the X Y plane. 

Here, 
1 needs to be in the [0 ,180 ]  domain, and 

2 needs to be in the [0 ,360 ] domain. 

Generally, reference axes N  and X  of the sliding plane and horizontal plane are not the same. 

Hence the auxiliary angle
3 , which subtracts the declination corresponding to the angle between the 

reference axes of the two planes from
2 , is used when composing the actual transformation matrix. 

 

3 2 declination      (4.1.18) 

 

From the definition above, the vectors n , s , t that form the equations (4.1.13) and (4.1.14) for 3D 

element transformation matrices can be obtained. Here, n  is the normal vector of the inclined plane 

and s  and t  are vectors on the inclined plane that are perpendicular to it. 

 

  

Figure 4.1.3 MCS according to 
dip angle and dip direction 
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Meanwhile, because the MCS axes of 2D elements are different from that of 3D elements in GTS NX, 

the definition of the axial direction vector and dip angle of the local coordinate system changes. The 

dip angle 
1  is defined as the angle between the MCS Y  axis and x  axis of the local coordinate 

system. However, because the rotation angle of the vertical axis Y  is not considered, the dip 

direction 
2  and declination is not used. The figure below displays the definition of the axis direction 

vector and dip angle of the 2D local coordinate system x y z   . 

 

Y

X

n

s

1

Z
 

 

From the definition above, the vectors n , s , t that form the equations (4.1.13) and (4.1.14) for 2D 

element transformation matrices can be obtained: 
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Figure 4.1.4 Definition of dip 
angle and dip direction on 2D 
MCS 
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Interface affiliated elements (interface, shell interface, pile elements) are models used to simulate 

interface behavior. The linear stiffness matrix used for these elements are applied such that the 

elements are separated or do not penetrate each other. 

 

The linear stiffness matrix for interface, pile elements are expressed as equation (4.1.21) and the 

added rotational DOF form for shell interface elements is expressed as equation (4.1.22). 
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nk  : Normal stiffness 

tk  : Tangential stiffness 

t  : Thickness of shell interface element 

 

Precautions need to be taken on the units for the stiffness above. For example, when the SI system of 

units is used, the units for stiffness are 3/N m , not the units for the modulus of elasticity 2/N m .  

Equation (4.1.23) is recommended for calculating the stiffness, where the modulii of elasticity around 

the target element is divided by the characteristic length. Here, the characteristic length (
chl ) is 

recommended for the thickness of line interface, shell interface, and pile elements. The use of the 

square root of the element area ( A ) is recommended for the plane interface.  

 

n

ch

E
k

l
 , t n

ch

G
k k or

l
      (4.1.23) 

 ,   : Scale factor 

E , G  : Modulus of elasticity, Shear modulus 

 

The scale factor in the equation above needs to be selected empirically depending on the analysis. If 

the scale factor is too large, numerical problems can occur. If it is too small, accurate result values for 

the relative displacement of the interface element cannot be obtained. A value of '0.1 ~ 10' is 

recommended.  

 

1.4 
Elastic Material of 

Interface Affiliated 

Elements 
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The Coulomb friction model is provided for as the nonlinear material model for interface, shell interface 

elements, and the details are explained in Chapter 2. For pile elements, the multiple curve input or a 

value to simulate perfectly plastic behavior is used as the nonlinear material model. 

GTS NX supports the following nonlinear elastic behavioral models for truss or embedded truss 

elements: 

 

► Compression only behavior 

► Gap behavior 

► Tension only behavior 

► Hook behavior 

► User defined nonlinear elastic behavior 

 





allowable 

tension stress

         





gap strain

 
(a) Compression only behavioral mode   (b) Gap behavioral model 





allowable 

compression 

stress

 





hook strain

 
(c) Tension only behavioral model   (d) Hook behavioral model 

 

Gaps and hooks have inputs with a length unit. Internally, the gap strain and hook strain are calculated 

using the element length.  

 

1.5 
Nonlinear Elastic 

Behavior of 

Truss/Embedded Truss 

Elements 

Figure 4.1.5 Various nonlinear 
elastic behavioral models 
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GTS NX supports the following nonlinear elastic behavioral models for elastic link elements: 

 

► General behavior 

► Tension only behavior 

► Compression only behavior 

► User defined nonlinear elastic behavior 

 

Tension only, compression only and user defined nonlinear elastic behavior are defined in a similar 

way as the nonlinear elastic behavior of truss and embedded truss in section 1.4. However, whilst the 

behavior of truss and embedded truss elements are represented using the stress strain relationship, 

elastic link elements do not have sectional properties and hence, their behavior is defined using the 

force displacement relationship shown in Figure 4.1.6, not the stress strain concept. Because tension 

only and compression only behaviors do not require separate inputs for allowable strength and 

allowable displacement, a user defined function needs to be used for application. 

 

d

P

compression

       

tension

P

d

 
(a)  Tension only   (b) Compression only 

 

In Figure 4.1.6, d represents the relative displacement between connected nodes and P represents 

the internal member forces.  

 

Jardine1 suggested the use of material models that define nonlinear behavior to consider the nonlinear 

behavior that occurs in small strain states for clay. 

 

The Jardine model is a nonlinear elastic model that can simulate nonlinear behavior at small strain 

states, and the Tresca model is used for plastic analysis when the stress of the material is larger than 

the input shear strength. Here, the behavior is completely plastic and the stiffening behavior is not 

considered. 

 

Nonlinear elastic behavior 

                                                                 
1 Jardine, R. J., Symes, M. J. and Burland, J. B. "The measurement of soil stiffness in the triaxial apparatus," Geotechnique 

34, No. 3, 323-340, 1984. 

1.6 
Nonlinear Elastic 

Behavior of Elastic Link 

Elements 

Figure 4.1.6 Tension only and 
compression only behavior of 
elastic link elements 

1.7 
Jardine 
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The Jardine model derives the nonlinear formula based on the relationship between the secant 

modulus of elasticity and axial strain measured from the undrained triaxial compression test. The 

undrained triaxial compression test applies an incremental load in the axial direction of a cylindrical 

sample, and the stress along the circumferential side is maintained. 

 

The secant modulus of elasticity (
uE ) can be directly calculated from the measured value from the 

triaxial compression test. 

 

;0a a

u

a

E
 




     (4.1.23) 

 

a  : Axial strain 

a  : Axial stress 

;0a  
: Initial(when 0a  ) axial stress 

 

Because the Jardine model assumes the nonlinear relationship between the secant modulus of 

elasticity and axial strain, the modulus of elasticity in the elastic region can be defined using the 

following equation: 

 

 cos log a
uE G F G

A





  

     
   

   (4.1.25) 

 

A  : Strain at maximum stiffness 

F  : Maximum stiffness value 

G  : Average stiffness value 

 

test data

best fit

uE

F

G

2G F

min
max

a
A B C

 
 

A , F , G  can be directly computed from the experimental stiffness-strain curve, and the B , C  

parameters needed for computing  ,  in the following equation are assumed to be the strain at the 

Figure 4.1.7 Jardine 
parameters 
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average stiffness and minimum stiffness. In this case, the average stiffness becomes equation (4.1.25) 

where / 2 input is for the cosine term, and the minimum stiffness is where   is input. 

 

log 2

log( / )
log

log( / )

C A

B A

 
 
 
 

    (4.1.26) 

 

/ 2

log /B A



 

  

    (4.1.27) 

 

F , G  do not need to be the same as the experimental maximum, average stiffness. F is the 

maximum value of the trend line that best fits the data. When the strain is outside the range of the 

maximum strain (
max ) and minimum strain (

min ), the tangent modulus of elasticity is assumed as a 

constant value.  

 

The general value of 
min represents the minimum strain of the experimental data values. A value that 

is stable in the plastic region needs to be selected for
max . If 

max the value is too large, a negative (-) 

elastic tangent stiffness is computed, which can cause numerical instability. Hence, the 
max value is 

generally defined to be smaller than C . 

 

The equivalent stiffness of the Jardine model is as follows: 

 

     
2 2 2

1 2 2 3 3 1

2

3
eq            

 
  (4.1.28) 

1 , 2 , 3  : Major strain at the elastic state 

Here, 
eq can be calculated as 3 a at the stress state of the undrained triaxial test (

1 a  , 

2 3 1/ 2 a     ). 

The tangent modulus of elasticity 
utE can be expressed in the same way as equation (4.1.25), and 

expressing this as a relationship equation with 
eq is as follows: 

 

     1 cosu eqE f G F G I         (4.1.29) 

     
 

 
1

2 cos sin
2.303

ut eq

F G I
E f G F G I I



 
  


       (4.1.30) 

 

And,  

 

log
3

eq
I

A

 
  

 
    (4.1.31) 
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The equivalent linear strain considering the boundary range
max and 

min is as follows. 

 

min min 3eq  , max max 3eq      (4.1.32) 

 

The tangent modulus of elasticity is assumed to be a constant value outside the boundary range, and 

the general form of 
uE can be expressed as follows: 
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 



  

   



 (4.1.33) 

 

The computed average tangent stiffness from equation (4.1.33) is used when calculating the 

increment strain through recursive calculations. When calculating the actual stiffness, the secant 

stiffness equation (4.1.24) is used for accurate computation. 

 

The relationship between the tangent and secant modulus of elasticity in the triaxial test is as follows: 

 

 u aa
ut

a a

d Ed
E

d d



 
     (4.1.34) 

 

The axial incremental stress
a  due to the axial incremental strain

a , found from the relationship 

between the given axial strain and secant modulus of elasticity, can be expressed as follows: 

 

   
0 0

00

0 0 0a a a a

aa
a ut a u a u a a u aE d E E E

   


     

 
        (4.1.35) 

 

To express the relationship between incremental stress and incremental strain linearly, the average 

modulus of elasticity
utE  is used, and can be expressed as follows. 

 
0 0

0

u eq u eq
ut

eq eq

E E
E

 

 





   (4.1.36) 

eq
 : Renewed equivalent strain 

uE
 : Secant stiffness, computed from equation (4.1.33) 

 

The 3D material stiffness matrix can be expressed as follows, using the average modulus of elasticity: 
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 

D   (4.1.37) 

 

The D-min model is a sectioned linear model applied to general rocks (hard rock, soft rock etc.), 

proposed by Japan Central Research Institute of Electric Power Industry (CRIEPI), Hayashi, Hibino. 

Sectioned linear models have different stiffnesses for each construction step, but are normalized such 

that the stiffness has a fixed value within a construction step. 

 

It is assumed that the modulus of elasticity decreases and the Poisson’s ratio increases as the Mohr 

circle approaches the failure envelope. Hence, the relative distance between the Mohr circle and 

failure envelope determines the modulus of elasticity and Poisson’s ratio of each section. The material 

property values of this model are constant for each load step and so, repeated analysis is not required 

for each load step. 

 

The failure envelope equation can be expressed as follows: 

 

1

a

R t

 

 

 
  

 
    (4.1.38) 

  :  Hydrostatic stress 

  :  Shear stress 

a  :  Mohr circle coefficient 

t  :  Tensile strength 

R  :  Shear strength 

 

The relationship between the failure envelope and Mohr circle is expressed in Figure 4.1.8 

 

  

1.8 
D-min 
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Failure is determined using the buffer index ( R ), as shown in Figure 4.1.8. If the buffer index is larger 

than '1', it is in the elastic region and if the buffer index is less than '0', failure is assumed. 

 

 '    0.0 1.0R k R R       (4.1.39) 

 

Here, the modified buffer index is: 

 

min

1 3

'

2
t

d
R

 







    (4.1.40) 

mind
 : Minimum distance between failure envelope and Mohr circle 

k  : Buffer index from user input variable 

 

The factor of safety ( sF ) is as follows: 

 

 1 2

1 3

min ,

2

s

D D
F

 


 
 
 

    (4.1.41) 

 

Here, the buffer index is computed at the integral point, and this can be used to compute the modulus 

of elasticity and Poisson's ratio of the next step: 

 

  

Figure 4.1.8 Failure envelope 
and Mohr circle of D-min model 
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   (4.1.42) 

iE
 : Initial modulus of elasticity 

crE
 : Critical modulus of elasticity 

m  : Nonlinear material coefficient 

i  : Initial Poisson's ratio 

cr
 : Critical Poisson's ratio 

n  : Nonlinear material coefficient 

 

The Mohr circle coefficient ( a ) and buffer index ( k ) increases with the increase in initial modulus of 

elasticity ( iE ). The relationship between the Mohr circle coefficient ( a ) of various rocks, buffer index 

( k ) and initial modulus of elasticity ( iE ) is shown below in table 4.1.2. The data is based on the 

triaxial compression test and was put together by the Japan Road Traffic Information Center in 1986. 

 

Initial Elasticity modulus 

( iE , 2/kgf cm ) 
Buffer index ( k ) Mohr circle coefficient ( a ) 

100 1,000iE 
 2.0 1.0 

1,000 10,000iE 
 4.0 2.0 

10,000 100,000iE 
 6.0 3.0 

100,000 iE
 10.0 4.0 

 

Ground stress-strain behavior becomes nonlinear as it approaches the failure criterion, and this can be 

simulated by modifying the foundation modulus. The function proposed by Duncan and Chang2 is used 

to calculate the foundation modulus. The stress-strain curve of the function is a hyperbola and the 

foundation modulus is a function of confining stress and shear stress. It is very useful because 

nonlinear material models only need material properties that can be easily obtained from the triaxial 

compression test or literature, 

 

The Duncan and Change nonlinear stress-strain curve displays a hyperbolic form between the axial 

strain space generated by shear stress 1 3  . Three foundation modulus are needed depending on 

the stress state and stress path; the initial modulus iE , tangent modulus tE , and unloading-reloading 

modulus urE . (Refer to Figure 4.1.9) 

 

  

                                                                 
2 Duncan, J. M., and Chang, C.-Y. “Nonlinear Analysis of Stress and Strains in Soils,” J. Soil Mech. Found. Div., ASCE 96, 

5 (1970), 1629-1653. 

Table 4.1.2 Parameters based 
on initial Elasticity modulus 
(JARTIC, 1986) 

1.9 
Hyperbolic Model 

(Duncan-Chang) 
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The modluii and coefficient of the nonlinear elastic model can be obtained from the graph with a 

vertical axis of the ratio between modulus of elasticity and atmospheric pressure ( aE p ) or ratio 

between bulk modulus and atmospheric pressure ( m aB p ), and a horizontal axis of the ratio between 

maximum confining pressure and atmospheric pressure ( 3 ap ) in log scale, as shown in Figure 

4.1.10. The initial loading coefficient (K) can be obtained when the vertical axis is aE p at the point 

where 3 1ap  and slope at this point can be used to calculate the coefficient n  for the initial stiffness. 

The bulk modulus index m can be found from the slope when the vertical axis is m aB p . 

 

n or m

1
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3/Pa  
 

The bulk modulus mB  is defined by equation (4.1.43). 

 

  

Figure 4.1.9 Nonlinear stress-
strain behavior 

Figure 4.1.10 Determination of 
nonlinear ground material 
properties 
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


   (4.1.43) 

  : Amount of principal stress change, 

v  : Amount of principal stress change, 

 

Initial modulus 

When the ground experiences a ‘0(zero)’shear stress (when 1 3 0   ), the stress-strain behavior is 

calculated using the initial modulus iE . This initial tangent modulus is controlled by the confining 

stress 3  and can be calculated using equation (4.1.44). 

 

3

n

i L a

a

E K p
p

 
  

 

    (4.1.44) 

iE
 : Initial tangent modulus, a function of confining stress 

LK
 : Loading coefficient 

ap
 : Atmospheric pressure 

3  : Confining stress 

n  : Index for defining the effects of confining stress on initial modulus 

 

If the index n  is 1.0, the initial modulus iE  is directly proportional to the confining stress. If it is 

‘0(zero)’, iE  is unrelated to the confining stress. 

 

If the confining stress is in the tensile state, the initial modulus can be ‘0 (zero)’ or ‘-(negative)’. To 

prevent this, GTS NX sets a lower bound for the confining stress. The set value is 0.01 ap . 

 

Tangent modulus 

The ground is known to follow the load path when it experiences a larger shear stress than it has 

experienced before. The constitutive behavior is dominated by the tangent modulus tE  when the load 

path is followed. This tangent modulus can be defined as a function of the ground material properties, 

triaxial deviatoric stress 1 3  and confining stress 3 of a Duncan-Chang model. 
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   (4.1.45) 

tE
 : Tangent modulus 

iE
 : Initial tangent modulus 

  : Internal friction angle of the ground 

c  : Cohesion of the ground 

fR
 

: Ratio between maximum shear stress and asymptote of the hyperbola 

(generally a value of 0.75 ~ 1)  

 

Here, the minimum value of tE can be restricted. The basic minimum tangent modulus is ap . If this 

value is too small, it can cause convergence problems. 

 

Unloading-reloading modulus 

Nonlinear models use the unloading-reloading modulus urE  when the ground is unloading from a 

large shear stress state. This coefficient is calculated in a similar manner to the initial modulus, except 

that the unloading-reloading coefficient number
 urK  is used instead of LK .  

 

3

n

ur ur a

a

E K p
p

 
  

 
    (4.1.46) 

 

Unlike the tangent modulus, this modulus is not affected by the shear stress. If the unloading-reloading 

coefficient number urK is not defined, it is defined to be the same as the loading coefficient number LK .  

 

Poisson’s ratio 

The Poisson's ratio of nonlinear models are either set as a constant unrelated to the stress state or 

calculated from the bulk modulus of the soil depending on the confining stress. For the latter case, the 

bulk modulus can be found using equation (4.1.47). 

3

m

m b a

a

B K p
p

 
  

 
    (4.1.47) 

mB
 : Bulk modulus 

bK
 : Bulk modulus number  

m  : Bulk modulus index  

 

The relationship between the Poisson’s ratio and bulk modulus can be defined from the elastic theory, 

as shown in equation (4.1.48). 
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
    (4.1.48) 

 

If the Poisson’s ratio in the equation above is ‘0(zero)’, 3mB E and if the Poisson’s ratio is 0.49,

17mB E , the calculated Poisson’s ratio is limited to '0 ~ 0.49'. 

 

Failure region 

The failure condition of a nonlinear elastic model cannot be defined. However, to show that the shear 

region is large for this material, the failure region is defined as the region that satisfies the following 

condition: 

 

1 3 1 3 sin cos
2 2

fR c
   

 
 

     (4.1.49) 

 

The failure ratio 
fR in the Duncan-Chang equation is used as shown in equation (4.1.50): 

 

   1 3 1 3ff ult
R          (4.1.50) 

 

The ultimate strength  1 3 ult
  term represents the asymptote which the hyperbolic stress-strain 

curve approaches at high strains. Also,  1 3 f
  is the deviatoric strain at failure. 
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Plastic Material Properties 

GTS NX includes various plastic material models to simulate actual ground and structural phenomena. 

This section briefly introduces the plastic theory used and the properties of each material model. The 

table below lists the available plastic materials for each element. 

 

Failure condition 

Element type 
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von Mises ∨    ∨ ∨ ∨ ∨ ∨ 

Tresca       ∨ ∨ ∨ 

Mohr-Coulomb       ∨ ∨ ∨ 

Drucker-Prager       ∨ ∨ ∨ 

Strain-Softening       ∨ ∨ ∨ 

Modified Cam Clay       ∨ ∨ ∨ 

Jointed Rock       ∨ ∨ ∨ 

Modified Mohr 

Coulomb 
      ∨ ∨ ∨ 

Hoek Brown       ∨ ∨ ∨ 

Generalized 

Hoek Brown 
      ∨ ∨ ∨ 

Modified UBCSAND       ∨ ∨ ∨ 

Sekiguchi-Ohta 

(Inviscid) 
      ∨ ∨ ∨ 

Soft Soil       ∨ ∨ ∨ 

Hardening Soil with 

Small strain stiffness 
      ∨ ∨ ∨ 

Section 2 

Table 4.2.1 Available plastic 
materials for each element type 
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Generalized 

SCLAY1S 
      ∨ ∨ ∨ 

CWFS       ∨ ∨ ∨ 

Inverse Rankine    ∨      

GeoGrid    ∨      

Coulomb Friction   ∨       

Janssen   ∨       

 

 

Principal stress invariance 

Principal stress invariance is a convenient method of expressing the yield function. The stress induced 

at an arbitrary point within the material can be expressed using the following equation, which uses the 

direction vector
jn  that defines the principal stress direction: 

 

  0ij ij jn       (4.2.1) 

ij
 : Kronecker delta 

 

0jn   in the equation (4.2.1) above, and the necessary and sufficient condition for equation (4.2.1) is 

as follows: 

 

0ij ij       (4.2.2) 

 

The matrix equation (4.2.2) can be expressed as a cubic equation for principal stress, as shown below: 

 
3 2

1 2 3 0I I I         (4.2.3) 

 

Here,  
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zx zy z
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I I

I I I

   

          

  

       

  

   

       

   

  (4.2.4) 

 

1I , 2I , 3I  can be expressed using the principal stresses 1 , 2 , 3  as follows. 

2.1 
Failure Criterion and 

Invariance 
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1 1 2 3

2 1 2 2 3 3 1

3 1 2 3

I

I

I

  

     

  

  

  



   (4.2.5) 

 

Deviatoric stress invariance 

The stress tensor 
ij can be divided into the hydrostatic pressure and invariant stress components, as 

shown below: 

 

ij ij m ijs        (4.2.6) 

Here,   1/ 3 / 3m x y z I        and represents the average stress. Also, 
ij ij m ijs      is the 

deviatoric stress and represents the pure shear state. 

 

The deviatoric stress invariance can be expressed as shown below: 

 

0ij ijs s      (4.2.7) 

 

Equation (4.2.7) can be expressed as follows: 

 
3 2

1 2 3 0s J s J s J       (4.2.8) 

 

Here, 
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 

 

 

    



         
  

 

  (4.2.9) 

 

1J , 2J , 3J  can be expressed using the deviatoric principal stresses 1s , 2s , 3s  as follows: 

 

       

 

1 1 2 3

2 2 22 2 2

2 1 2 3 1 2 2 3 3 1

3 3 3

3 1 2 3 1 2 3

0

1 1

2 6

1

3

J s s s
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J s s s s s s

     

   
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 

   

  (4.2.10) 

 



 

 
 Section 2. Plastic Material Properties | 131 

 

 

 

ANALYSIS REFERENCE Chapter 4. Materials 

1I , 2I , 3I , 1J , 2J , 3J  are all scalar invariants, which have properties independent of the 

coordinate axes. To conveniently express the yield function geometrically, 1I , 2J , 3J  invariants are 

often used. 

 

Geometric meaning of the three stress invariants 

 

1

2

3

e



r0

O

N

 1 2 3,  ,    P

1 2 3   

 
 

Vector OP  can be defined when point  1 2 3,  ,    P  is expressed as an arbitrary stress state in the 

principal stress space, as shown in Figure 4.2.1. Vector OP  can be divided into vector ON , which 

follows the hydrostatic pressure axis; and vector NP , which exists in the deviatoric plane 

perpendicular to the hydrostatic pressure axis. Their size is as follows:  

 

1

2

1

3

2

I

r J

 

 

ON

NP

    (4.2.11) 

 

Vector NP  needs to be rotated by 0  in the 1  axis to define point P  on the deviatoric plane. Here, 

0  is called the similarity angle and its equation is as follows: 

 

1 3
0 3/2

2

1 3 3
cos

3 2

J

J
 

 
   

 
   (4.2.12) 

 

Here, 0  has the following range: 

 

Figure 4.2.1 Stress state 
definition in principal stress 
space  
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00
3


      (4.2.13) 

 

For numerical analysis, it is more convenient to use Lode's angle  rather than 0 and it can be defined 

using the following equation: 

 

1 3

3/2

2

1 3 3
sin

3 2

J

J
 

 
   

 
   (4.2.14) 

 

Here, 0
6


   and has the following range: 

 

6 6

 
       (4.2.15) 

 

It is often more convenient to express the principal stress as an invariant stress when defining the 

yield function of the material, and it can be rearranged using Lode's angle to give the following 

equation: 
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2 1
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3 1
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 

  
  

     
     

      
     

          

   (4.2.16) 

 

 

Plastic materials display permanent deformation on structures even after the external load is removed, 

unlike elastic materials. To express such behavioral properties, strain is formulated following additive 

decomposition, which divides strain into elastic and plastic components, as shown below: 

 
el pl ε ε ε     (4.2.17) 

ε  : Total strain 
el
ε  : Elastic strain 

pl
ε  : Plastic strain 

 

Because Hook's law defines the relationship between deformation and stress in the elastic region, 

applying this to equation (4.2.17) and rearranging gives the following equation for stress: 

 

( )el pl  σ Dε D ε ε     (4.2.18) 

2.2 
Formulation of Plastic 

Behavior 
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σ  : Stress vector 

D  : Material stiffness matrix 

 

The failure criterion defines the plasticity criteria and can be defined differently depending on the 

material properties such as steel or concrete. The material failure criterion can be modeled in function 

form using various experiments on the material. Generally, this function has variables that represent 

stress and hardening, and can be expressed as follows: 

 

( , ) 0f  σ     (4.2.19) 

f  : Yield function 

  : Hardening parameter 

 

If the yield function f  is equal to or smaller than ‘0’(zero), plastic flow does not occur and if f  is 

larger than '0', plastic flow occurs. 

 

Plastic flow rule 

Material failure induces plastic flow, and this plastic flow causes stress redistribution to maintain the 

equilibrium state of the material. The plastic flow calculation is done in nonlinear form and the 

increment form is generally used for formulation. The general values used for calculating the plastic 

flow in plasticity analysis for materials are the incremental stress direction and plastic strain increment 

direction. The incremental stress direction is as follows: 

 

i
i

f



n
σ

     (4.2.20) 

n  : Gradient vector representing the stress increment direction perpendicular to the failure surface 

i  : Number of yield functions 

 

The plastic strain increment can be divided into the size and directional components using Koiter’s law 

as follows: 

 

1 1

n n
p i

i i i

i i

g
  

 


 


  m

σ
   (4.2.21) 

 

Here, ig is the plastic potential function, which can be expressed as  ,ig σ using stress and 

hardening variable  , generally obtained from material tests. 
i is the plastic multiplier, and it needs 

to satisfy the following Kuhn-Tucker condition: 

 

0f  , 0i  , 0i f     (4.2.22) 
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From the conditions above, plastic flow does not occur when the yield function f  is smaller than 0 

and 
i  is always 0. When plastic flow occurs (

i is larger than 0), the yield function is always 0. m is 

the vector that defines the plastic strain increment in equation (4.2.21). Here, the method of defining 

the plastic strain increment by /f σ , which uses the yield function f  and not the plastic potential 

function g , is called the associated flow rule and the method which uses the plastic potential function 

to define the plastic strain increment direction by /g σ is called the non-associated flow rule. Using 

the non-associated flow rule on a material model can suppress the excessive cubical expansion 

phenomena due to the discord between the stress direction and strain direction. However, the amount 

of calculation increases because the stiffness matrix is asymmetric and an asymmetric solver needs to 

be used. 

 

The hardening variable  used for strain hardening can be defined using the dimensionless equivalent 

plastic strain as shown below: 

 

 
T

p p2
 

3
  ε Q ε     (4.2.23) 
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Q   (4.2.24) 

 

Stress Return Method 

 

► Implicit backward Euler method 
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X

B

C

eσ

yield criterion

 
 

The Implicit backward Euler method can be expressed using the following equation: 

 

C B C σ σ Dm     (4.2.25) 

 

Because the unknown C values exist on both sides of equation (4.2.25), the concept of residual 

vectors r  is introduced to find the value using repeated analysis: 

 

 c B C  r σ σ Dm    (4.2.26) 

 

The residual vector r converges to 0 when the final stress state lies on the failure surface. The new 

residual vector newr for recursive calculations using the 1st order Taylor expansion can be defined 

using the following equation: 

 

new old  


    


m
r r σ Dm D σ

σ
   (4.2.27) 

 

Because the residual vector is 0new r for the converged final stress, substituting this into equation 

(4.2.27) and rearranging for σ gives equation (4.2.28). 

 

   
1

1

old old  



 
        

 

m
σ I D r Dm R r Dm

σ
 (4.2.28) 

 

Also, using the 1st order Taylor expansion on the yield function gives the following equation. 

 

0T

new old old

f f
f f f h 



 
      

 
σ n σ

σ
  (4.2.29) 

 

Figure 4.2.2 Implicit backward 
Euler method  
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Substituting equation (4.2.29) into equation (4.2.28) and rearranging for  gives the following equation: 

 
1

1

T

old old

T

f

h











n R r

n R Dm
    (4.2.30) 

 

► Cutting Plane Method 

X

B

C

eσ

D

yield criterion

 
 

The cutting plane method can be defined as follows with reference to Figure 4.2.3: 

 
e

C X   σ σ σ Dm    (4.2.31) 

 

Defining the stress return direction above at point B in the perpendicular direction modifies equation 

(4.2.31) as follows: 

 

C B B σ σ Dm     (4.2.32) 

 

Also, using the 1st order Taylor expansion on the incremental function gives the following equation. 

 

0C B B B

f f
f f f h  



 
        

 
σ n Dm

σ
  (4.2.33) 

 

Hence, the plastic multiplier increment  is as follows  : 

 

B

B B

f

h
 

n Dm
    (4.2.34) 

 

Constitutive equation 

The plastic constitutive equation can be composed as follows. The small stress increment is 

determined by the elastic part of the strain increment vector. 

 

 p    σ D ε ε Dε Dm    (4.2.35) 

Figure 4.2.3 Cutting Plane 
Method 
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Because the current stress always needs to be positioned on the failure surface, the consistency 

condition 0f   needs to be satisfied. Rearranging equation (4.2.35) for the small strain increment 

gives the following equation (4.2.36) for the small stress increment: 

 

h

 
   

 

T
ep

T

Dmn D
σ D ε D ε

n Dm
   (4.2.36) 

 

The ep
D  in equation (4.2.36) is called the continuum tangent stiffness matrix, 

 

When using the consistent tangent stiffness matrix for the Newton-Raphson recursive formula, it 

converges faster than when equation (4.2.36) is used because of the 2nd order convergence property. 

This 2nd order convergence property can be obtained from the following process. First, differentiating 

equation (4.2.25) gives the following equation: 

 


   

 

  
   

  

m m
σ Dε Dm D σ D

σ
  (4.2.37) 

 

Here,   is the change in  . 

 

Equation (4.2.37) can be rearranged as follows: 

 

 Aσ Dε Dm     (4.2.38) 

 

Here, 


  


m
A I D

σ
, 




 

 
  

 

m
m m D  

 

If 1H A D , equation (4.2.38) can be arranged as follows. 

 

  σ H ε m     (4.2.39) 

 

If equation (4.2.39) is rearranged for the total strain term using the consistency condition, the following 

equation can be obtained: 

 

h

 
   

 

T
ep

T

Hmn H
σ H ε C ε

n Hm
    (4.2.40) 

 

The ep
D  in equation (4.2.36) is the continuum tangent stiffness matrix, and the ep

C  in equation 

(4.2.40) is the consistent tangent stiffness matrix.  
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The von Mises failure condition assumes that failure occurs when the 2nd order invariant of deviatoric 

stress 2J  reaches a certain value. This condition is often used to simulate plastic behavior of metallic 

materials. The perfect plastic failure condition that does not consider hardening can be expressed 

using the following equation: 

 

2

3
( ) 3 : 0

2
y dev dev yf J      σ σ σ    (4.2.41) 

devσ
 : Deviatoric stress 

y
 : Failure stress 

 

Because only the deviatoric stress is used to express the failure condition, it is appropriate in 

expressing the ductile materials where failure occurs regardless of hydrostatic pressure. The radius of 

the von Mises failure surface in 3D stress state is 2 / 3 y , and surface is expressed as a cylinder 

parallel to the hydrostatic axis. 

 

 
 

1

1 2 3   

2

3

2.3 
von-Mises 

Figure 4.2.4 von Mises failure 
surface in principal stress 
coordinate system 

Figure 4.2.5 von Mises failure 
surface shape in the meridian 

plane for
6


    
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The associated plastic flow is assumed for the von Mises failure condition. The plastic strain variation 

is as follows: 

 

3

2 :

pl

dev

dev dev

f
d d d 


 


ε σ

σ σ σ
   (4.2.42) 

 

Hardening factor 

GTS NX supports isotropic, kinematic and combined hardening model in von-Mises yield function. In 

the case of isotropic hardening, the central axis of initial yield surface isn’t change since it supposes 

that the initial yield surface expands uniformly. 

 

2

3
( , ) 3 ( ) : ( ) 0

2
y dev dev yf J      σ q q σ σ q

  (4.2.43) 

 

 

·

Initial yield surface

1

2

Isotropic hardening

Figure 4.2.5-1 Change of the 
yield surface of isotropic 
hardening model 
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The hardening factor of isotropic hardening model consists of effective plastic strain such as 

   pe  q . The yield stress due to hardening is given by the function of effective plastic strain, 

( )y pe  and directly uses the hardening function, ( )y ph e . 

The combined hardening model supposes that expansion and movement of the yield surface occurs 

simultaneously by plastic deformation. In the combined hardening model, the yield surface is defined 

by yield stress and back stress as follows: 

 

3
( , ) : ( ) 0

2
dev dev yf   σ q Σ Σ q    (4.2.44) 

devΣ  : dev σ α  

α  : back stress 

 

 
 

The hardening factors of combined hardening model are effective plastic strain and back stress. 

 

pe  
  
  

q
α

    (4.2.45) 

 

The yield stress is calculated from hardening function using the combined variable c  as follows: 

 

· ·

Combined hardening

Initial yield surface

1

2

Kinematic hardening

Figure 4.2.5-2 Change of the 
yield surface of combined 
hardening model 
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(0) (1 ) ( )y c y c y ph h e        (4.2.46) 

 

In case of the combined variable, 0c  , it is isotropic hardening and kinematic hardening when 

1c  . The plastic strain of combined hardening and the change rate of back stress which follows 

hardening rule of Ziegler can be expressed using the following equation: 

 

3

2 :

pl

dev

dev dev

d dε Σ
Σ Σ

    (4.2.47) 

y pl

c

p

dh
d d

de
α ε      (4.2.48) 

 

Hardening curve 

The hardening curve is a material property which expresses plastic property of material. It is generally 

obtained from test and uniaxial tension/compression test or pure shear test is widely used. The 

hardening curve in GTS NX consists of inputting true stress-plastic strain curve and the conversion 

process from test result is as follows: 

 

If you know load-displacement curve, true strain and true stress can be calculated using the following 

equation. 

 

0

0 0 0

log log ,
L d L Pe

L L A



 
   

        
   

  (4.2.49) 

0 ,L L
 

: Length of before/after deformation 

0A
 

: Area of before deformation 

 

If you know engineering stress-strain, it can be calculated as follows: 

 

 log 1 ,E Ee     
    (4.2.50) 

,E E 
 

: Engineering strain/stress 

 

Since the plastic strain begins to occur from the moment that the material yield, it can be calculated ad 

follows: 

 

el
pe

E


     

    (4.2.51) 

E  
: Elastic modulus 
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The Tresca criterion was originally developed to be used on failure conditions of metallic materials. In 

geotechnical analysis it is often used to simulate the ground material behavior for undrained conditions. 

The failure condition for this criterion can be expressed using the uniaxial compression strength, as 

shown below. 

 

3 1 y        (4.2.52) 

y
 : uniaxial compression strength 

 

Equation (4.2.52) can be expressed using the stress invariant term 
2J and

0 , as shown in equation 

(4.2.53). 
0(0 60 )   
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  (4.2.53) 

 

Rearranging this equation: 

 

 2 0 2 0

1
, 2 sin 0

3
yf J J   

 
    

 
   (4.2.54) 

 

Or, it can be expressed using the terms 
1 2, ,I J  as follows. 

6 6

 
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    
        

    

  

  (4.2.55) 

 

The effects of hydrostatic pressure on the failure plane are not considered for this criterion and so, it is 

unrelated to
1I . The Tresca failure criterion is a hexagonal column parallel to the hydrostatic axis in 

the principal stress space, as shown in Figure 4.2.6, and is expressed as a regular hexagon in the 

deviatoric plane, as shown in Figure 4.2.7(a). 

 

According to the experimental results, the shear strength of the saturated soil is unrelated to 
1I  for 

undrained loading. The Tresca model can obtain appropriate results under these conditions:  

 

  

2.4 
Tresca 
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(a) Failure surface shape in  plane            (b) Failure surface shape in the meridian plane for 
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If the von Mises and Tresca criteria are congruent for
0( 0 )cr    and 

0( 60 )tr   , the von Mises 

surface becomes a circle that circumscribes the Tresca hexagon (Figure 4.2.7(a)) in the deviatoric 

plane. In this case, the expected maximum difference in failure stress occurs along
0( 30 )  , and the 

failing shear stress ratio between the von Mises and Tresca criteria is 2 / 3 1.15 . If the two criteria 

1

1 2 3   

2

3

Figure 4.2.6 Tresca failure 
surface shape in principal 
stress space 

Figure 4.2.7 Tresca failure 

surface shape in  plane and 

meridian plane 
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are conformed for simple shear, the von Mises circle inscribes the Tresca hexagon, and the maximum 

error between the two criteria occur along 
0( 0 )  and

0( 60 )  . 
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

r
tr

cr
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Tresca

1

2
3


r

Von mises

Tresca

 
(a) Relation with Tresca-Circumscription in  plane (b) Relation with Tresca-Inscription in  plane 

 

The Mohr-Coulomb model is used to simulate most terrain and it displays sufficiently reliable results 

for general nonlinear analysis of the ground. 

 

 

Mohr-Coulomb

Real soil

 



n

constant:

 
 

GTS NX can simulate changes in the modulus of elasticity and cohesion with height for a Mohr-

Coulomb model using equation (4.1.4). If the amount of cohesion change with height is ‘0(zero)’, a 

constant value is used. If the amount of change is not ‘0(zero)’, the cohesion can be calculated with 

respect to a reference height using equation (4.2.56). 

 

   

 

            

                                    

ref ref inc ref

ref ref

c c y y c y y

c c y y

   

 
   (4.2.56) 

Figure 4.2.8 von Mises and 
Tresca failure surface shape 

2.5 
Mohr-Coulomb 

Figure 4.2.9 Yield function of 
Mohr-Coulomb model 
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refc
 : Input cohesion value 

incc
 : Cohesion increment with respect to depth 

refy
 

: Depth at which 
refc is measured 

 

The y in equation (4.2.56) represents the integral position of the element. If the integral position is 

located higher than 
refy , the cohesion can be smaller than '0'. To prevent this, the cohesion value is 

not decreased any further and the 
refc  value is used. 

 

Yield function of Mohr-Coulomb model 

According to Mohr(1900), failure can be expressed using the following equation: 

 

tannc        (4.2.57) 

 

 

 

 

 

Here, the limit shear stress   of an arbitrary plane is only related to the normal stress n  of the same 

plane. 

Equation (4.2.57) shows that material failure occurs at the stress state where the largest Mohr circle 

comes across the Coulomb friction failure envelope. It also shows that the intermediate principal stress

2 1 2 3( )     does not have an effect on the failure condition. 

 

Hence, the yield function of the Mohr-Coulomb failure plane is as follows: 

 

tan 0nf c         (4.2.58) 

 

The failure criterion of equation (4.2.58) is called the Mohr-Coulomb criterion and it is the most widely 

used method for ground materials due to its simplicity and accuracy. 

 

Expressing the Mohr-Coulomb criterion using principal stress terms
1 2 3( )    , equation (4.2.58) 

can be rearranged into the following equation: 

 

1 3 1 3
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 
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 
  

 
 

 
 

   (4.2.59) 

c  : Cohesion 

  : Internal friction angle 
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2 cos

1 sin
c

c
f




 

  
: Uniaxial compressive strength when maximum principal stress is 0 

2 cos

1 sin
t

c
f




 

  
: Uniaxial tensile strength when minimum principal stress is 0 

 

Equation (4.2.59) provides convenience when defining material properties because it uses the uniaxial 

compressive and tensile strengths. 
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1 3 sin
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
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1 3

2
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1 3
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







yield envelope

 
 

Equation (4.2.58) can be expressed using terms 
1 2,I J  and  , which are often used in numerical 

analysis. 

 

 1 2 1 2

1 1
, , sin cos sin sin cos 0

3 3
f I J I J c     

 
      

 
 (4.2.60) 

 

Assuming associated flow for the plastic potential function gives the following equation: 

 

 1 2 1 2

1 1
, , sin cos sin sin cos 0

3 3
g I J I J c     

 
      

 
 (4.2.61) 

 

The Mohr-Coulomb criterion is an irregular hexagonal pyramid with a straight meridian in the principal 

stress space, as shown in Figure 4.2.11, and the deviatoric shape in the   plane 
1 2 3( 0)     is 

Figure 4.2.10 Geometric 
diagram of principal stresses 
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an irregular hexagon. To draw the irregular hexagon, the lengths 
0tr  and 

0cr are required and can be 

expressed as follows: 

 

0

2 6 cos

3 sin
t

c
r




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
    (4.2.62) 

0

2 6 cos

3 sin
c

c
r







    (4.2.63) 

 

The 
0 0/t cr r  from equations (4.2.62) and (4.2.63) is as follows: 

 

0

0

3 sin

3 sin

t

c

r

r






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
    (4.2.64) 

 

Because the deviatoric sections of the Mohr-Coulomb failure surface are all geometrically similar, the 

ratio /t cr r  is always constant for an arbitrary deviatoric section. 

 

0

0

3 sin

3 sin

t t

c c

r r

r r






 


    (4.2.65) 

 

If the tensile strength is input, the tensile principal stress of the Mohr-Coulomb cannot surpass the 

input tensile strength. GTS NX applies a complex of the Mohr-Coulomb failure function and the tensile 

Rankine failure function to consider Mohr-Coulomb failure with allowed tensile strength. 

 

In the Mohr-Coulomb model tensile strength can be considered based on two types: Pressure and 

Rankine.  

 

- In the first “pressure type” method, the average of the principal stresses can not exceed the tensile 

strength:  

1 2 3

3
t

  


 
  

- For Rankine type the maximum principal stress should not exceed the tensile strength.  
 

1 t   

 

For more information on the Rankine model, see Section 2.14. 
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2

3

Figure 4.2.11 Mohr-Coulomb 
failure surface shape in 
principal stress space 
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(a) Failure surface shape in  plane           (b) Failure surface shape in the meridian plane for 

6


    

 

As shown in Figure 4.2.12(b), tan corresponding to the slope of the straight failure surface of the 

Mohr-Coulomb failure criterion does not change with the confining pressure (or hydrostatic pressure). 

Hence, the criterion is accurate when the confining stress is within a limited range, but it does not 

agree with actual physical phenomena when the confining stress is larg enough to cause compressive 

failure. However, this criterion gives highly accurate results within the confining stress ranges of the 

field and it is easy to use. Hence, it is the most widely used failure model. 

 

 

The Drucker-Prager model3 was developed to solve the numerical problems that occur on the corners 

of the yield shape of the Mohr-Coulomb model. This model is an expansion of the von Mises model 

and because the function is defined such that the deviatoric stress can increase or decrease 

depending on hydrostatic pressure, it is also called the Extended von Mises criterion. 

 

Yield function of Drucker-Prager model  

Thye Drucker-Prager failure criterion ( f ) and plastic potential function( g ) can be expressed using 

the stress invariant terms 
1I  and 

2J as follows: 
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1 2 2 1

1 2 2 1
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, 3 0

f I J J I c

g I J J I

 



   

  
    (4.2.66) 

Here,  ,  ,  are as follows: 

 

                                                                 
3 Drucker, D. C. and Prager, W. “Soil mechanics and plastic analysis for limit design,” Quarterly of Applied Mathematics, 

vol. 10, no. 2, 1952, pp. 157–165. 

Figure 4.2.12 Mohr-Coulomb 

failure surface shape in 

plane and meridian plane 

2.6 
Drucker-Prager 
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The Drucker-Prager failure surface can be expressed in the principal stress space, as shown in Figure 

4.2.13. This failure surface has a conical shape with the hydrostatic axis (
1 2 3    ) as its center. 

The Drucker-Prager failure surface can be thought of as a Mohr-Coulomb failure surface with no 

edges, or it can be thought of as the expanded form of the von Mises failure surface for materials that 

depend on hydrostatic pressure, such as soil. If it is assumed to circumscribe the outer boundary of 

the Mohr-Coulomb failure surface, then and  can be expressed as follows. 
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  (4.2.68) 
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Figure 4.2.13 Drucker-Prager 
failure surface shape in 
principal stress space 
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(a) Failure surface shape in  plane       (b) Failure surface shape in meridian plane 

 

 

GTS NX provides the strain softening model with the stress-strain curve shown in Figure 4.2.15. This 

stress-strain curve is composed of 3 linear sections. The linear sections are the elastic section to peak 

shear strength, the strain softening section from peak to residual shear strength, and the constant 

residual shear strength section. 
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uc
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tr
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softening  
 

Failure criterion 

The strain softening model of GTS NX is an elastic-soft plastic model that uses the von Mises model. 

The softening behavior is isotropic softening behavior and is formulated based on the strain softening 

theory. The yield function of the strain softening model can be expressed using the shear stress and 

shear strength terms, as shown in equation (4.2.69). 

 

 23 3 uf J C      (4.2.69) 

Figure 4.2.14 Drucker-Prager 

failure surface shape in 

plane and meridian plane 

2.7 
Strain Softening 

Figure 4.2.15 Strain softening 
composition relationship 
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Here, the shear strength 
uC  can be expressed using the softening coefficient   as shown in Figure 

4.2.15 using equation (4.2.70): 

 

when   0

when   0<

when   

u

u u res
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C C R

C


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 




  
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   (4.2.70) 

uC
 : Maximum cohesive shear strength 

resC
 : Residual cohesive shear strength 

  : Softening coefficient 

res
 : Softening coefficient at intersection of residual strength line and softening line 

R  : Softening rate 

 

The softening coefficient  is a control variable that controls the plastic softening behavior and is 

calculated from the principal plastic strain. The principal plastic strain of the von Mises model is as 

follows: 
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Here, 
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P   (4.2.72) 

 

The softening coefficient   can be calculated from the following equation and the  -
uC  

relationship is shown in Figure 4.2.16. 
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3
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Simulating clay like materials as elastic-plastic hardening materials is a widely used concept (Britto 

and Gunn4). The Modified Cam-clay model provided in GTS NX is also based on the elastic-plastic 

hardening theory. 

 

Formulation of the Modified Cam-clay model in GTS NX uses all effective stresses and is materialized 

using nonlinear elastic and the implicit backward Euler method (R.I. Borja5). Nonlinear elastic behavior 

represents the increase in bulk modulus when pressure is applied to the material. Also, the associated 

flow rule is used and the failure surface can increase or decrease depending on hardening/softening 

behavior. 

Figure 4.2.17(a) displays the relationship between the ground volume change and hydrostatic 

pressure using the normal consolidation line and over-consolidation line, or swelling line. If the stress 

increases and surpasses the hydrostatic pressure, the volume change follows the over-consolidation 

line. If the increase in hydrostatic pressure is enough, the volume change passes through the 

intersection of the normal and over-consolidated lines and follows the normal consolidation line.  

 

Rotating Figure 4.2.17(a) in the counter clockwise direction by 90°shows similarities with the elastic-

plastic hardening stress-strain curve in Figure 4.2.17(b). In other words, the overconsolidation line 

corresponds to the initial linear elastic section and the normal consolidation line corresponds to the 

hardening plastic stress-strain relationship. 

 

  

                                                                 
4 Britto, A. M., Gunn, M. J.  Critical state soil mechanics via finite elements, Ellishorwood Limited, 1987. 
5 Borja, R. I., “Cam-clay plasticity, Part II: Implicit integration of constitutive equation based on a nonlinear elastic stress 

predictor,” Computer  Methods in Applied Mechanics and Engineering, Vol. 88, Issue 2, 1991, pp. 225-240. 

Figure 4.2.16 Definition of 
softening behavior 

2.8 
Modified Cam-Clay 
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(a) Volume-hydrostatic pressure relationship  (b) Stress-strain relationship 

 

Figure 4.2.18 displays the pressure, volume and critical state line relationship. M  is defined as the 

slope of the critical state line in Figure 4.2.18(a) projected onto the p q   plane, as shown in Figure 

4.2.18(b).  

 

critical state line
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M

isotropic normal 
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

k



ln(1)
ln P

V

 
(a) Pressure and specific volume relationship      (b) Critical state line 

 

Symbol Significance 

  Slope of over-consolidation line 

  Slope of normally consolidation line 

M  Slope of critical state line 

 

The material properties of the ground are generally obtained from 1D consolidation experiments. The 

compression index cC  and recompression index sC  are generally obtained from the void ratio, e  and 

 10log p graph. The compression index and recompression index have the following equation using 

the slope of normal consolidation line   and slope of over-consolidation line  : 

 

Figure 4.2.17 Similarity 
between volume-hydrostatic 
pressure and stress-strain 
relationships 

Figure 4.2.18 Critical state line 

Table 4.2.2 Modified Cam-clay 
material properties 
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,
2.303 2.303

c sC C
       (4.2.74) 

 

The slope of the critical state line M can be estimated from the relationship with the effective shear 

resistance angle (shear resistance angle from drained tests).  

 

6sin

3 sin
M






     (4.2.75) 

  : Internal friction angle, calculated from triaxial compression test 

 

  can be calculated using the following equation, after the specific volume N  of the normal 

consolidation line at 1.0p  is found from Figure 4.2.18(a).  

 

  ln 2N          (4.2.76) 

 

The yield function of Modified Cam-clay is as follows, and it displays an elliptic shape: 
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    (4.2.77) 

cp
 : Pre-consolidation pressure 

M  : Slope of critical state line 

'ij
 : Effective stress 
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Yield function
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Critical state line

 
 

When the ground reaches the critical state, the following relationship is satisfied: 

 

q Mp      (4.2.78) 

 

The size of the Modified Cam-clay model failure surface is determined by cp . In other words, 

increasing cp increases the failure surface and can simulate hardening behavior, and reducing cp  can 

simulate softening behavior. The hardening/softening equation for Modified Cam-clay models can be 

obtained from the following process: 

 

Firstly, the volumetric strain change and its relationship with the specific volume change are defined by 

the following equation: 

 

1
v

dV dv
d

V e
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
    (4.2.79) 

e  : Void ratio 

v  : Specific volume 

v  : Volumetric strain  

 

Also, the additive decomposition of strain is assumed for the Modified Cam-clay model as shown 

below: 

 
e p

v v vd d d        (4.2.80) 

 

The following equation can be obtained from equations (4.2.79) and (4.2.80). 

 

Figure 4.2.19 Yield function of 
Modified Cam-clay model 
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  (4.2.81) 

 

The v  and cp  relationship can be rearranged using Figure 4.2.20. 
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    (4.2.82) 

 

Rearranging equations (4.2.81) and (4.2.82) are as follows: 
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    (4.2.83) 

 

Integrating equation (4.2.83) gives the following hardening/softening equation:  

 

0
1

exp( )p
c c v

e
p p 

 


   


    (4.2.84) 

 

Also, Modified Cam-clay material models have the following nonlinear elastic properties: 

 

Figure 4.2.20 Pressure and 
specific volume relationship 
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v





    (4.2.85) 

K  : Bulk modulus 

G  : Shear modulus 

e  : Void ratio 

 

However, the effective pressure is unknown when calculating the initial stress state and so, the given 

linear elastic modulus is used. 

 

To use the Modified Cam-clay model, the initial void ratio, in-situ stress and initial pre-consolidation 

pressure cp is required. GTS NX uses a direct input value or a value automatically calculated from in-

situ stresses and over-consolidation ratio (OCR) for the pre-consolidation pressure cp . The user 

needs to input the initial void ratio. 

 

The over-consolidation ratio (OCR) is defined using equation (4.2.86). The max'p is the maximum 

effective hydrostatic pressure on the material, and 'vp is the initial effective hydrostatic pressure. 

Generally, the maximum effective normal stress experienced by the ground is determined from 

oedometer tests. 

 

max'

'

p
OCR

p
     (4.2.86) 

 

For a clear explanation, it is assumed that the shear stress does not exist and the gravitational 

direction is the y axis. Then, the in-situ stress becomes equation (4.2.87).  

 

 0 0 0 0 0 0 0
T

X Y Z     σ    (4.2.87) 

 

To calculate cp , first use the OCR and equations (4.2.88) and (4.2.89) to calculate maxp and maxq . 

 

 max 0 0 0OCR OCR OCR 0 0 0
T

X Y Z     σ   (4.2.88-a) 

 max 0 0 0 0 0OCR OCR OCR 0 0 0
T

Y Y YK K     σ   (4.2.88-b) 
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           

  (4.2.89) 

 

The 0K condition is also applied to equation (4.2.88-b). 0K  can be estimated from the internal friction 

angle using the following equation: 
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0 1 sinh

v

K






  


    (4.2.90) 

h   : Horizontal direction effective stress 

 

GTS NX uses equation (4.2.77) to calculate cp . If the user inputs the cp value directly, GTS NX tests 

whether the input value and in-situ stress state satisfy equation (4.2.77) and adjusts the value when it 

is not satisfactory. 

 

 

General ground surface strata have brittle fracture surfaces, and these are called 'joints' for rock 

models. The material models that reflect these properties are called jointed rock models.  

 

Jointed rock models are transversely isotropic perfectly plastic material models. The material can have 

transversely isotropic properties depending on the rock layer characteristics in the elastic region. In 

other words, rock layers have isotropic properties in the layer direction, but have anisotropic properties 

in the normal direction to the layer. The perfectly plastic behavior is based on the Coulomb friction 

function in the major joint direction. Hence, perfect plasticity occurs in the major joint direction when 

maximum shear stress is reached. The major joint direction can be defined in a maximum of 3 

directions and the first major joint direction is equal to the transversely isotropic material direction. 

 

Orthotropic elastic material stiffness 

The elastic material behavior of jointed rock models are already explained for transversely isotropic 

elastic materials above. 

 

Plastic behavior in 3 directions 

The yield function in the major joint direction i can be defined using equation (4.2.82): 

 

2 2 tani s t n i if c           (4.2.91) 
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tan i
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2.9 
Jointed Rock 

Figure 4.2.21 Yield criterion for 
individual planes 
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To examine the plasticity condition for each failure surface, stress transformation to the local 

coordinate system ( n , s , t ) is required. 

 
T

nst i XYZσ T σ     (4.2.92) 

nstσ
 : Stress in local coordinate system 

XYZσ
 : Stress in material coordinate system 

iT
 : Transformation matrix in the i active plane 

 

The general 3D transformation matrix that considers the dip angle and dip direction is as follows: 

 
2 2 2 2 2 2x y z x y y z z x

T

i x x y y z z x y y x z y y z z x x z

x x y y z z y x x y y z z y z x x z

n n n n n n n n n

n s n s n s n s n s n s n s n s n s

n t n t n t n t n t n t n t n t n t

 
 

    
    

T   (4.2.93) 

 

Here, the 3D 
in , 

is , 
it  is as follows: 
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n s t   (4.2.94) 

 

Expressing the local coordinate system by rotation in the GCS is as follows: 
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Figure 4.2.22 MCS from dip 
angle and dip direction  
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The Modified Mohr-Coulomb model is the expanded version of the Mohr-Coulomb model, and is a 

specialized model for silt or sand. Modified Mohr-Coulomb models are complex material models which 

combine nonlinear elastic and plastic models. 

 

Nonlinear elastic 

The Modified Mohr-Coulomb model defines the elastic region as nonlinear elastic and the power-law is 

used to obtain the elastic volumetric stress-strain relationship. In other words, the tangent compression 

modulus is expressed as a water supply form of the current hydrostatic pressure, as shown below: 

 
1 m

t ref

ref

p
K K

p



 
  

 
 

    (4.2.95) 

refK
 : Reference coefficient of compressibility 

refp
 

: Reference pressure 

m  : Rational number, '0.5' used for sand 0 1m   

 

The following equation can be expressed by considering the tensile pressure (
tp ): 

 
1 m

t
t ref

ref

p p
K K

p



 
  

 
 

    (4.2.96) 

 

Here, the tensile pressure is a numerical invention used to consider the tensile stress when an in-situ 

pressure of '0' is assumed. However, actual soil analysis nearly always considers non-zero in-situ 

stresses. 

The equation (4.2.96) above is derived as the volumetric stress-strain relationship, as shown in the 

equation (4.2.97): 

 
1m

et
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p p
dp K d

p




 
 

 
 

   (4.2.97) 

 

Integrating equation (4.2.97) and rearranging gives equation (4.2.98): 

 

    
1

1

0

m m e em

t t ref ref V Vp p p p mp K F           (4.2.98) 

 

Yield function 

The failure surface of the Modified Mohr-Coulomb model is a decoupled double hardening model, 

where shear failure and compressive failure do not affect each other. This coupled failure surface has 

the following equation in the p q  space: 

2.10 
Modified Mohr-Coulomb 
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   (4.2.99) 

1f  : Shear yield function 

2f  : Compressive yield function 
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The functions  1R  ,  2R   of equation (4.2.99) model the strength difference between triaxial 

compression and triaxial tension as a function of  . The Modified Mohr-Coulomb model can be 

expressed in the same way as a Mohr-Coulomb model using functions  1R  ,  2R   in the 

deviatoric plane. 

Figure 4.2.23 Shape of yield 
function in p-q plane 

Figure 4.2.24 Shape of yield 
function in deviatoric plane 
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A relationship like the one found in equation (4.2.100) is derived to fit the triaxial tensile Mohr-Coulomb 

model. 

 

  1
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1 sin 3
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n

R
 



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   (4.2.100) 

 

Here, n = -0.229 . 

 

1 is coupled with the friction angle, as shown in equation (4.2.101). 
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   (4.2.101) 

 

Here, 
1 0.7925  . 

 

The maximum value of 
1  is the friction angle (  ) 46.55°. Also, the shape of the compression cap 

can be modified using  2R  .  2R   is the same as equation (4.2.102) below. 
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   (4.2.102) 

 

Here, n = -0.229 and the cap is circular when the basic value ‘0’ is used for
2 . 

 

Flow rule 

The plastic potential function in the p q plane can be expressed as follows. For the Modified Mohr-

Coulomb model, it is applied to 2 faces that consider shear and compression. 
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   (4.2.103) 

 

Here, the dilatancy angle  can be expressed using the friction angle  , as shown in equation 

(4.2.104). 
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

 





   (4.2.104) 

sin cv
 : Friction angle when volume is constant 

 

Hardening behavior 

Two types of shear and compression hardening behavior are applied in the Modified Mohr-Coulomb 
model. The shear hardening behavior is determined by the friction angle and can be expressed as the 
following equation. If the shear hardening occurs, the dilatancy angle is recalculated by the Row’s rule6 
(4.2.104). 
 

 sin sin       (4.2.105) 

2

3
  p pγ γ     (4.2.106) 

  : Equivalent deviatoric plastic strain 

pγ  : Deviatoric plastic strain 

 

The compression hardening behavior is expressed by the pre-consolidation stress as the following 

equation. 

 
1

0

m m

pc
c ref v

ref

P m
P p

p


  
    
    

   (4.2.107) 

cP  : Pre-consolidation stress 

0cP  : Pre-overburden pressure 

  : Compression cap hardening parameter 

 

 

Hoek and Brown 7  suggested the use of the equivalent continuum concept to define the stress 

reduction phenomena due to failure of jointed rocks. Hoek and Brown first suggested a failure function 

to separate intact rock and broken rock. After the failure is defined, the stress reduction phenomena 

were simulated by decreasing the particular coefficient values that define the failure function. This 

method suggested by Hoek and Brown defines the uniaxial compressive strength, which cannot be 

                                                                 
6 ROWE, P. W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.  

Proc. Roy. Soc. London A269 (1962), 500-527. 
7 Hoek, E. and Brown, E. T., “Empirical strength criterion for rock masses,” Journal of Geotechnical and 

Geoenvironmental Engineering, Vol. 106, Issue GT9, 1980. 

2.11 
Hoek-Brown 
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considered in the existing Mohr-Coulomb method. This allows for the accurate and simple 

representation of rock behavior. 

 

Yield function 

The failure criterion suggested by Hoek and Brown is as follows. The intermediate principal stress ( 2 ) 

term is ignored in this failure criterion.  

 

2

1 3 3

1 2 3

c cm s    

  
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 
   (4.2.108) 

c  : Uniaxial compressive strength 

m , s  : Empirical coefficient for defining rock failure 

 

The yield function ( f ) can be expressed using the stress invariant as follows: 

 

2 21
2

sin
4 cos 2 cos 0

33
c c c

I
f J m m s


    

 
       

 
  (4.2.109) 

1I  : First order invariant 

2J
 : Second order invariant 

c  
: Uniaxial compressive strength of the rock ( / 6 / 6     ) 

 

In the principal stress space, the Hoek-Brown model has a diverging hexagonal pyramid shape along 

the hydrostatic axis and its deviatoric plane shape is expressed as an angular hexagonal shape made 

up of 6 curved surfaces. This hexagonal shape has an edge where the curved surfaces meet, and this 

creates difficulties. To solve this problem, GTS NX processes these edges as curved surfaces using 

the modified Hoek-Brown criterion suggested by Wan8. 

 
2 2 * * 2( ) ( ) 3 0c c cf q g qg p s            (4.2.110) 

 

Here, * / 3c cm  , 
23q J , 1 / 3p I  and the ( )g   used to define the deviatoric plane shape is as 

follows: 
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 
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 
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   
   (4.2.111) 

 

Here, 2 2 24(1 )cos ( / 6 ) 5 4D e e e       

                                                                 
8  Wan, R. “Stress return solution algorithm for generalized Hoek-Brown plasticity model,” Proceedings of the 8th 

International Conference of the Association for Computer Methods and Advances in Geomechanics, Morgantown, USA, 

1994, pp. 719-724. 
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Figure 4.2.25 displays the shape of the Hoek-Brown model in the stress space. 

 

 
 

 

The Coulomb friction model assumes that the frictional force is proportional to the size of the value 

obtained by multiplying the coefficient of friction and the tangent direction force. GTS NX defines the 

yield function of the model using the equation below:  

 

2 tan ( ) ( ) 0t nf t c     t     (4.2.112) 

tt
 : Lateral direction force 

nt  : Normal direction force 

  : Internal friction angle 

c  : Cohesion 

  : Size of plastic relative displacement 

 

In GTS NX, the internal friction angle and cohesion can be set as a functional value that depends on 

the plastic relative displacement. 

 

The equation above can be expressed as Figure 4.2.26. GTS NX supports additional tensile strength 

inputs to express brittle behavior in the tensile direction. 
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Figure 4.2.25 Hoek-Brown 
failure surface 

2.12 
Coulomb Friction 
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The plastic relative displacement 
pu  can be defined using the plastic multiplier, which represents 

size and plastic direction components as shown below: 

2 tan
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t n
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g t






 


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u
t

t

    (4.2.113) 


 : Dilatency angle 

  : Plastic multiplier 

 

 

Here, the plastic multiplier can be calculated from the map regression method. 

The Janssen model, which is applied to the rotational DOF of shell interface elements, simulates the 

nonlinear elastic relationship between the moment and rotational displacement. GTS NX provides for 

the Coulomb friction model and Janssen model for shell interface elements. The Coulomb friction 

model is used to define the normal and lateral direction forces. 
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  (4.2.114) 

xt / xu  : Normal interface traction / Normal relative displacement 

yt , zt  : Tangential interface traction 

ym , 
y  : Axial moment / rotation angle 

b  : Thickness of shell interface element  

Figure 4.2.26 Coulomb friction 
function 

2.13 
Janssen 
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nK
 : Tangential stiffness 

 

Only perfectly plastic behavior is supported for Coulomb friction models used on shell interface 

elements.  

 

 

Geogrids are reinforcing structures used to strengthen the ground and have only the tensile only 

structural behavioral properties. When selecting the geogrid element in GTS NX, the inverse Rankine 

model applied on a truss elements is used for 2D models and the inverse Rankine model applied on a 

plane stress element is used for 3D models. Here, the allowable compressive strength is '0(zero)'. The 

inverse Rankine model only needs to be computed using the opposite sign from the Rankine model 

defined below. 

 

The Rankine material failure assumes that failure occurs when the maximum principal stress ( max ) 

reaches the tensile strength and the yield function is as follows:  

 

 max 0tf          (4.2.115) 

 

Expressing equation (4.2.115) using the invariants 1 2,  ,  I J   are as follows. 
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Here, 𝐴(𝜃) is 

 

 

1

2

3

3 1
cos sin         for 

2 2

sin                               for 

3 1
cos sin      for 

2 2

A

  

  

  





 


 


   (4.2.117) 

 

Figure 4.2.27 displays the 3D shape of the inverse Rankine model in the stress space. The shape is a 

right triangle in the deviatoric plane (   plane) as shown in Figure 4.2.28, and it can be defined as a 

linear function about the hydrostatic axis in the meridian plane. 

 

  

2.14 
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The Modified UBCSAND model is developed to simulate liquefaction phenomenon using plastic theory 

based on effective stress. It is extended to enable implicit nonlinear analysis for 3D stress state based 

on the constitutive model9, 10 developed to simulate liquefaction phenomenon with explicit method for 

2D stress state. 

                                                                 
9 Beaty, M. and Byrne, PM., “An effective stress model for predicting liquefaction behaviour of sand,” In Geotechnical 

earthquake engineering and soil dynamics III, Americal Society of Civil Engineers, Geotechnical Special Publication 75(1), 

1998, pp. 766-777. 
10 Puebla, H., Byrne, PM., and Phillips, R., “Analysis of CANLEX liquefaction embankments: protype and centrifuge 

models,” Canadian Geotechnical Journal, 34, 1997, pp 641-657. 

1

2

3

Figure 4.2.27 Rankine failure 
surface shape in principal 
stress space 

Figure 4.2.28 Rankine failure 
surface shape in deviatoric 

plane (  plane) and meridian 

plane 

2.15 
Modified UBCSAND 
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Basically, in the elastic domain, it represents a nonlinear elastic behavior that elastic modulus changes 

with respect to pressure. A plastic behavior is determined by three yield functions of shear, 

compression and pressure off. In particular, the shear yield function is able to consider the effect of 

material densification for cyclic loading. 

The Modified UBCSAND model is implemented as the implicit backward Euler method to maximize 

convergence and efficiency and uses a consistent tangent stiffness matrix 

 

Nonlinear elasticity 

In elastic zone, it represents a nonlinear elastic properties that elastic modulus changes with respect 

to effective pressure ( 'p ). 

 

'
ne

e e t
G ref

ref

p p
G K p

p

 
  

 
 

   (4.2.118) 

e

GK  : Elastic shear modulus number 

refp  : Reference pressure 

ne  : Elastic shear modulus exponent 

tp  : Allowable tension pressure 

 

Here, the allowable tension pressure is calculated automatically based on the cohesion and maximum 

friction angle. Assuming that Poisson’s ratio doesn’t change according to the pressure and isotropic 

properties are maintained, the bulk modulus is determined as follows: 

 

 2 1

3(1 2 )

e eK G

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
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
    (4.2.119) 

 

Shear yield function 

The Modified UBCSAND model represents a plastic shear behavior using Mohr-Coulomb yield 

function. 

 

2 1

1
3 tan 0

3
s mc mf R J I c       (4.2.120) 

m  : Mobilized friction angle 

 

Here, 
mcR  which expresses the shape of   plane is as follows: 
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  (4.2.121) 

 

Shear flow rule 

The flow rule utilizes the following plastic potential based on the non-associated plastic flow rule11. 

Therefore, the non-associated matrix operation is performed in case of using the Modified UBCSAND 

model. 
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 (4.2.122) 

m  : Mobilized dilatancy angle 

 

The size of dilatancy angle changes with the similar form to the stress-dilatancy angle theory12 for the 

variation of mobilized friction angle 

 

sin sin sinm m cv       (4.2.123) 

cv  : Constant volume friction angle 

 

In other words, the plastic deformation describes shrinkage when mobilized friction angle is smaller 

than constant volume friction angle whereas it describes swelling when mobilized friction angle is 

larger than constant volume friction angle 

 

  

                                                                 
11 Menetrey, P. and Willam, KJ, “Triaxial failure criterion for concrete and its generalization,” ACI Structural Journal, 

92:3, 1995, pp. 11-18. 
12 Rowe, P.W., “Stress-dilatancy relation for static equilibrium of an assembly of particles in contact,” Proceedings of the 

Royal Society of London, Mathematical and Physical Scieces, Series A, 269, 1962. pp-500-557. 
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Hardening shear behavior 

The hardening rule for the variation of maximum plastic shear strain is represented by the variation of 

stress ratio. 
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sin
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    (4.2.124) 

 

The hardening phenomenon is determined respectively for two shear yield functions. The primary yield 

surface is used when the present stress ratio is the maximum stress ratio of material. On the other 

hand, the secondary yield surface is activated when the present stress ratio is smaller than the 

maximum value of material. At this time, if the stress ration exceeds the previous maximum value, the 

primary yield surface is activated again. 

The secondary yield surface is introduced to simulate the increase of plastic stiffness for cyclic loading. 

Therefore, the plastic strain by secondary yield surface is smaller than by the primary yield surface. 

This phenomenon is called the densification of soil. On the other hand, if the load is unloading, the 

material maintains elastic state and the stress ratio decreases. 

The hardening rule of primary yield surface is expressed with the following equation: 
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  (4.2.125) 

p

GK  : Plastic shear modulus number 

refp  : Reference pressure 

np  : Plastic shear modulus exponent 
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Figure 4.2.29 
Swelling/Shrinkage according 
to the direction of plastic strain 
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p  : Peak friction angle 

fR  : Failure ratio 

1 3,P P    : Min./Max. plastic strain of principal axis 

 

 
 

Considering the densification of soil due to cyclic loading, the hardening rule of secondary yield 

surface is as follows: 
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  (4.2.126) 

,2

p

GK  : Cyclic plastic shear modulus number 

n  : Number of half cycles 

densF  : Soil densification fitting factor 

 

As the mobilized friction angle for cyclic loading closes to the maximum mobilized friction angle, the 

plastic shear modulus decreases and finally it closes to the perfect plastic state. In this case, the 

ground is determined with liquefaction. In case of reaching liquefaction, some residual hardening 

stiffness can be given through 
postF . 

 

,

p p
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postF  : Post liquefaction fitting factor 
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Figure 4.2.30 Plastic shear 
hardening behavior 
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Cap yield function, flow rule and hardening behavior 

The cap yield function is same with that of Modified Mohr-Coulomb model (4.2.99). It uses the 

associated plastic flow rule and the hardening model can be expressed with the following equation in 

the form what the size of compression limit increases for the plastic volumetric strain. 
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   (4.2.128) 

p

BK  : Plastic bulk modulus number 

mp  : Plastic shear modulus exponent 

 

Pressure cut-off yield function and flow rule 

The pressure cut-off yield function can be considered additionally to add the condition what the 

effective pressure is always larger than specified value ( 'pr cutf p p  ). It uses the associated 

plastic flow rule and the pressure cut-off yield function does not have hardening behavior. 

 

 

The Sekiguchi-Ohta model is widely used in Japan and still improved since it is developed by 

Sekiguchi and Ohta13. There are Inviscid and Viscid type. The Inviscid type is plastic model without 

time dependency. Although it shares several characteristic with Cam-Clay 14  model, there is a 

difference that the irreversible diliatancy 15  is strictly described considering the K0 stress state of 

normally consolidation. However, it causes a numerical problem because the plastic flow value is only 

undetermined under the preconsolidation stress state. In GTS NX, it resolves numerical problem in the 

preconsolidation stress using the algorithms16 which calculates the specificity vertex using the crossing 

of the two yield function. 

 

Nonlinear elastic 

Similarly to the Modified Cam-Clay model of GTS NX, it shows the nonlinear elastic characteristic what 

the elastic modulus changes with the effective stress ( p ) in the elastic range. 

 

                                                                 
13 Sekiguchi, H. and Ohta, H., "Induced anisotropy and time dependency in clays", 9th ICSMFE, Tokyo, Constitutive 

equations of Soils, 1977, 229-238 
14 Roscoe, K. H., Schofield, A. N. and Thurairajah, A., "Yielding of Clays in States Wetter than Critical", Geotech., 1963, 

Vol. 13, No. 3, pp. 211-240 
15 Ohta, H., Sekiguchi, H., "Constitutive equations consdiering anisotropy and stress reorientation in clay", Proceedings of 

the 3rd International Conference on Numerical in Geomechanics., 1979, pp. 475-484 
16 Pipatpongsa, T., Iizula, A., Kobayashi, I., Ohta, H., "Fem formulation for analysis of soil constitutive model with a 

corner on the yield surface", Journal of Structural Engineering, Vol. 48, pp. 185-194 

2.16 
Sekiguchi-Ohta (Inviscid) 
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   (4.2.129) 

K  : Bulk modulus 

0e  : Initial void ratio 

  : Slope of overconsolidation line 

  : Poisson's ratio 

G  : Shear modulus 

 

Yield function 

The yield function of Sekiguchi-Ohta (Inviscid) model is as follows: 
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   (4.2.130) 

M  : Slope of critical state line 

D  : Dilatancy modulus 

cp  : Preconsolidation pressure 

  : Generalized relative stress ratio 

 

The generalized relative stress ratio ( ) which is the value for the degree of volume expansion is 

expressed as follows: 
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   (4.2.131) 

ijs  : Stress deviator tensor 

cijs  : Preconsolidation stress deviator tensor of 0K  state 

 

In the above equation, it can be found that   is affected by the preconsolidation pressure and each 

component of stress deviator tensor. Through this, it describes strictly the dilatancy effect than Cam-

Clay model which considers only the preconsolidation pressure and the present stress deviator tensor. 

 

The dilatancy modulus ( D ) has the relation with slope of critical state line ( M ), slope of normally 

consolidation line (  ), slope of overconsolidation line ( ) and initial void ratio as follows: 
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MD         (4.2.132) 

 

Here,  01 e    ,  01 e    . The dilatancy modulus ( D ) is calculated internally in GTS 

NX. 

 

Figure 4.2.31 displays the yield function in principal stress space. As described before, it can be found 

that the yield function of Sekiguchi-Ohta model has the specificity which causes a numerical problem 

in the preconsolidation stress. 

 

1

2

3

 
 

Hardening behavior 

The preconsolidation stress ( cp ) is used as a parameter of isotropic hardening and defined as 

follows: 
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   (4.2.133) 

0cp  : Initial preconsolidation pressure 

p

v  : Plastic volumetric strain 

Figure 4.2.31 Yield function in 
principal stress space 
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0

p

v  : Initial plastic volumetric strain 

The Hoek-Brown failure criterion for rock masses is widely accepted and has been applied. While, in 

general, it has been found to be satisfactory, there are some uncertainties and inaccuracies that have 

made the criterion inconvenient to apply and to incorporate into numerical models. In particular, the 

difficulty of finding an acceptable equivalent friction angle and cohesive strength for a given rock mass 

has been a problem since the publication of the criterion in 1980. The Generalized Hoek-Brown model 

resolves all these issues and sets out a recommended sequence of calculations for applying the 

criterion. In order to link the empirical criterion to geological observations by means of one of the 

available rock mass classification schemes, the Rock Mass Rating is used17. 

 

Yield function 

The non-linear Generalized Hoek-Brown criterion for rock masses defines material strength in terms of 

major and minor principal stresses as: 
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   (4.2.134) 

ci  : Uniaxial compressive strength 

bm , s , a  : Parameter for defining rock mass failure  

 

Here, bm , s , a  can be expressed with the parameters related to the geological strength index(GSI) 

and the disturbance factor(D). 
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 (4.2.135) 

GSI : Geological strength index 

im  : Intact rock material property 

D : Disturbance factor (D=0 for undisturbed rock masses, D=1 for very disturbed rock masses) 

 

Flow rule 

                                                                 
17 Hoek E., C. Carranza-Torres, and B. Corkum. 2002. Hoek-Brown criterion – 2002 edition. In Proceedings of the 5th 

North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada: NARMS-TAC 2002, 

Toronto, Canada, eds. R.E. Hammah et al, Vol. 1, pp. 267-273. 

2.17 
Generalized Hoek-Brown 
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If the flow rule is used same as the yield function of Generalized Hoek-Brown, the corner from 

hexagon should be handled. However, this difficulty is removed by using the flow rule of conical shape 

such as Drucker-Prager model. 
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  and   is dilatancy angle. 

 

Figure 4.2.32 shows the shape in stress space of the Generalized Hoek-Brown model. The tensile 

stress is the following equation. 
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The Soft Soil model is suitable for simulation of normally consolidated or near normally consolidated 

clay soils. Although this model is replaced by the advanced constitute model that simulates the 

hardening behavior better or the Soft Soil Creep model that simulates the secondary consolidation, the 

Soft Soil model is better capable to model the compression behavior of very soft soils. The Soft Soil 

model uses the yield surface of Modified Mohr Coulomb model to resolve the convergence problem 

due to the discontinuity of yield function. The main features of this model are the stress-dependent 

nonlinear elastic behavior, the hardening behavior through pre-consolidation stress and the failure by 

shear stress. 

 

Nonlinear elastic 

The Soft Soil model has the nonlinear elastic characteristic which has the logarithmically relationship 

between volumetric strain and mean effective pressure. This is the same stress-dependent stiffness 

with Modified Cam-Clay. 

Figure 4.2.32 Hoek-Brown 
failure surface in the principal 
stress space 

2.18 
Soft Soil 
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The bulk modulus K and the shear modulus G have the following relationship for the effective stress

p . 
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   (4.2.138) 

0e  : Initial void ratio 

  : Slope of over-consolidation line 

  : Poisson's ratio 

 

If the tensile strength p is considered from the above equation, the bulk modulus can be expressed 

as follows: 
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By using the cohesion C and the friction angle , the tensile strength p can be calculated as follows: 

 

tan

C
p


      (4.2.140) 

 

Yield function and flow rule 

The Soft Soil model uses the yield function of Modified Mohr Coulomb model. The yield function and 

flow rule of Soft Soil model are same with the equation (4.2.99) and (4.2.103) respectively. For more 

details, please refer to the ‘2.10 Modified Mohr-Coulomb’. 

 

Hardening behavior 

Even though the Soft Soil model has each yield function of shear and compression, the hardening 

behavior occurs for the compression yield function. Same as the Modified Cam-Clay model, the 

compression hardening behavior is defined by the pre-consolidation stress which is the function of 

plastic strain. 
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0cp  : Initial pre-consolidation stress 

p

v  : Plastic volumetric strain 

0

p

v  : Initial plastic volumetric strain 
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The Hardening Soil with small strain stiffness model is a modification of the Modified Mohr-Coulomb 

model that considers the increased stiffness of soils at small strains. This behavior is described in this 

model using an additional strain-history parameter and two additional material parameters. 

As the sign convention for stresses and strains is displayed that compression is negative and tensile is 

positive, it assume that 1 2 3     for the principal stresses and 1 2 3     for the principal 

strains. For example, the relationship of 1 2 3     is established in case of triaxial tests. 

 

Nonlinear elastic 

In the Modified Mohr-Coulomb model, the following characteristics are used to the stress dependent 

value. 
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 (4.2.142) 

c  : Cohesion 

refp  : Reference stress for stiffnesses 

  : Friction angle 

m  : Power law for stress dependent stiffness 

50
ref

E  : Reference secant stiffness in standard drained triaxial test 

ref
oedE  : Reference tangent stiffness for primary oedometer loading 

ref
urE  : Reference unloading / reloading stiffness 

 

As the stiffness modulus can be changed according to the stress, this model shows the nonlinear 

elastic characteristic what the elastic modulus changes. 

 

Yield function, plastic potential function and flow rule 

T. Schanz, P.A. Vermeer and P.G. Bonnier18 have developed the Hardening Soil model based on the 

hyperbolic relationship between deviatoric stress and vertical strain in the triaxial test, and suggested 

the shear & compressive yield function as the following equation. 

 

                                                                 
18 Schanz T., Vermeer P.A., Bonnier P.G. (1999). The hardening-soil model: Formulation and verification. Beyond 2000 

in Computational Geotechnics, Balkema, Rotterdam. pp. 281-290. 

2.19 
Hardening Soil with small 

strain stiffness 
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 (4.2.143) 

q  : Deviatoric stress 

aq , 
fq  : Asymptotic & ultimate deviatoric stress 

50E  : Confining stress dependent stiffness modulus for primary loading 

urE  : Young's modulus for unloading and reloading 

p  : Hardening parameter (plastic shear strain) 

fR  : Failure ratio 
fq / aq  

,s cf f  : Shear & compressive yield function 

cp  : Pre-consolidation stress 

 

If 0p

v  , the above shear yield function can be considered the strain relationship as the following 

equation. 
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 (4.2.144) 

 

The yield function of Modified Mohr-Coulomb model consists of the shear, compressive and tensile 

yield function as the following equation. 
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 (4.2.145) 

13f  : Shear yield function ( 1 2 3    ) 
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cf  : Compressive yield function 

tf  : Tensile yield function 

cp  : Pre-consolidation stress 

  : Cap parameter 

tp  : Tensile strength 

 

The maximum shear stress fq  is calculated by the Mohr-Coulomb criteria, and the Mohr-Coulomb 

model is used in case of  1 3fq    . 

  is an auxiliary model parameter which control the value of compressive yield function in p-q space. 

It is decided by considering the stress ratio in the normally consolidated state ( 0K nc ) and the friction 

angle. 

The plastic potential function uses the Mohr-Coulomb criteria for shear, and the yield function for 

compressive and tensile as the following equation. 
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   (4.2.146) 

13g  : Shear plastic potential function (in case of 1 2 3    ) 

cg  : Compressive plastic potential function 

tg  : Tensile plastic potential function 

m  : Mobilized dilatancy angle 

 

The mobilized dilatancy angle m  can be obtained from the following equation, and it is limited to 

satisfy the condition 0 m    considering physical behavior. 

 

 
1 3

1 3

sin sin sin sin
sin ,sin ,sin

1 sin sin 2 cot 1 sin sin

m cv
m m cs

m cv c

     
  

      

  
  
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(4.2.147) 

m  : Mobilized friction angle 

cs  : Critical state friction angle 
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  : Dilatancy angle 

 

The mobilized friction angle and the critical state friction angle are consistent with the Rowe theory as 

described by T. Schanz, P.A. Vermeer and P.G. Bonnier. 

 

Hardening behavior 

The Modified Mohr-Coulomb model shows hardening behavior while increasing the effective plastic 

strain and it reaches the perfect plastic state in case of  1 3fq     as mentioned in the previous 

yield function. 

In the process of compressive hardening, the pre-consolidation stress
cp is defined as below: 
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  (4.2.148) 

ref
cp  : Reference pre-consolidation stress 

p
v  : Plastic volumetric strain 

 

Hardening Soil with small strain stiffness 

The Hardening Soil with small strain stiffness model is implemented by using the Modified Mohr-

Coulomb model and Small strain overlay19 model, and needed two additional parameters as below: 

 

0
refG  : Initial or very small-strain shear modulus 

0.7  
: Shear strain at which the shear modulus is about 70% of the initial small-strain shear 

modulus 

 

The strain range in which soils can be considered truly elastic is very small. With increasing strain 

range, soil stiffness decrease nonlinearly as the following graph. 

 

  

                                                                 
19 Benz, T. "Small strain stiffness of soil and its numerical consequences", PhD thesis, University Stuttgart, 2007. 



 

 

184 | Chapter 1. 개요 

 

184 | Section 2. Plastic Material Properties 

 

 

 

Chapter 4. Materials 

 
ANALYSIS REFERENCE 

 
 

To reflect the above characteristics, the Hardening Soil with small strain stiffness model uses the 

modified Hardin & Drnevich relationship20 as the following equation. 

 

0
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1
, 0.385
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sG
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G
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



 



    (4.2.149) 

sG  : Shear modulus 

0G  : Initial shear modulus 

  : Shear strain 

0.7
 : Shear strain at which the shear modulus is about 70% of the small-strain shear modulus 

 

Once the direction of loading is reversed, the stiffness regains a maximum recoverable value which is 

in the order of the initial soil stiffness. Then, while loading in the reversed direction is continued, the 

stiffness decreases again. 

 

To reflect the above characteristics, the Hardening Soil with small strain stiffness model writes the 

history of strain in the internal model, and follows Masing’s rule as follows: 

► The shear modulus in unloading is equal to the initial tangent modulus for the initial loading curve. 

                                                                 
20 B.O. Hardin, V.P. Drnevich, "Shear modulus and damping in soils: Design equations and curves", Journal of the Soil 

Mechanics and Foundations Division, 98(SM7):667-692, 1972. 

Figure 4.2.33 Characteristic 
stiffness-strain behavior of soil 
with the ranges for typical 
geotechnical structures and 
different tests 
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► The shape of the unloading and reloading curves is equal to the initial loading curve, but twice its 

size. Masing’s rule can be fulfilled by using twice of the initial loading 0.7  for the reloading 0.7 . 

 

The initial shear modulus 0G  is calculated by the following equation. 
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    (4.2.150) 

 

And the hysteresis shear strain ( H ) is defined as the following equation. 

 

3 , :H


    


eH
e e e

e
    (4.2.151) 

H  : Strain hysteresis tensor (for more details, refer to Benz19) 

e  : Incremental shear strain 

 

In the numerical analysis, the following incremental equation is used with the tangential stiffness of 

modified Hardin & Drnevich relationship. 
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  (4.2.152) 

 

 

Soft clay in its natural state has a significant anisotropy in the interior soil particle fabric by deposition 

and consolidation21. Also as the strain is continuously generated, the degree of anisotropy is changed 

whereby the interior soil particles are rearranged and contact between the particles is changed. The 

Generalized SCLAY1S model of GTS NX is rooted in the SCLAY122 model which considered the 

change due to the initial stress induced anisopropy of the soft clay and anisotropy of rotational 

hardening. 

On the other hand, the structure of the soil particle is composed of two parts23: bonding as well as 

fabric. The fabric is composed of spatial arrangement of particles and inter-particle contact, and the 

                                                                 
21 S.J. Wheeler, M. Cudny, H.P. Neher, C. Wlitafsky, "Some developments in constitutive modelling of soft clays", 

Proceedings of the International Workshop on Geotechnics of Soft Soils-Theory and Practice, Noordwijkerhoud, the 

Netherlands, 2003, pp. 17-19. 
22 S.J. Wheller, A. Naatanen, M. Karstunen, M. Lojander "An anisotropic elastoplastic model for soft clays", Canadian 

Geotechnical Journal, 40.2., 2003.,  pp. 403-418. 
23 J.B. Burland, "On the compressibility and shear strength of natural clays", Geotechnique, 40.3, 1990, pp. 329-378. 

2.20 
Generalized SCLAY1S 
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bonding is weakened gradually as the plastic straining is caused by the forces acting between the 

particles. The phenomenon that the bonding is weakened gradually by the plastic straining is called 

destructuration, and SCLAY1S model considers the destructuration phenomenon of the SCLAY1 

model additionally. 

The initial SCLAY1(S) model was the model assumed the triaxial stress state, and later it is improved 

by the model considering the general stress state. The Generalized SCLAY1S model is that the shape 

of yield function is complicated and needs more variables to represent the hardening behavior. 

However, It has a advantage that it can simulate the behavior of the general stress state strictly as well 

as the triaxial stress state. 

In the SCLAY1S model, ignoring the initial anisotropy and bonding, and in case of assuming a related 

material constant to 0, it can be found that the Modified Cam Caly model and the yield function are 

matched exactly. 

 

Nonlinear elastic 

The Generalized SCLAY1S model of GTS NX does the stress-dependent non-linear elastic behavior 

like Modified Cam Clay, Sekiguchi-Ohta, Soft-Soil models. This being so, the detailed description and 

formulas will be omitted. (Refer to the equation 4.2.139) 

 

Yield function and plastic potential function 

As the Generalized SCLAY1S model follows the associated flow rule, it is equal to the yield function 

and plastic potential function. 

The yield function of the SCLAY1 model simplified of the triaxial stress state is represented about the 

effective stress, and the signs of the stress is that compression is (+) and tensile is (-). 
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s s   (4.2.153) 

p  :  Pressure 

q  :  Shear stress 

cp  :  Preconsolidation pressure 

M  :  Slope of critical state line  

  :  Degree of anisotropy 

 

Substituting 0 to the degree of anisotropy   and summarizing the equation in the equation (4.2.153), 

it can be found that the yield function of the Modified Cam Clay is equal to the equation (4.2.77). In 
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other words, the SCLAY1 model is the generalized model considering the degree of anisotropy from 

the Modified Cam Clay model. 

 
 

The generalized yield function in the general stress state is represented as follows. 

 

       23 3
: : 0

2 2
d d d d cf p p M p p p

 
             

 
s α s α α α   (4.2.154) 

 

Here, the deviatoric fabric tensor dα  of the soil particle is represented by the fabric tensor 
α  in the 

same form of the deviatoric stress tensor. 

 

,

1

3
d ij ij ij ij         (4.2.155) 

 

The fabric tensor 
α  has the following properties. 

 

1kk ij       (4.2.156) 

 

The degree of anisotropy   meaning the slope of the yield function in the simplified of the triaxial 

stress state is defined by the deviatoric fabric tensor dα  as follows. 

 

 2 3
:

2
d d  α α     (4.2.157) 

 

And preconsolidation stress cp  in the generalized SCLAY1S model considered bonding of the soil 

particle is represented as follows. 

q

p

1

M

1



cp

Figure 4.2.34 Yield function of 
triaxial stress state 
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 1c cip x p       (4.2.158) 

cip  : Preconsolidation pressure of the intrinsic yield function 

x  : Degree of bonding 

 

Here, the intrinsic yield function has the same stress in the same fabric, the void ratio, the slope and 

the limit state but is the conceptional yield function24 having smaller preconsolidation stress. The 

detailed description about the intrinsic yield function and the degree of bonding can be seen part of the 

hardening behavior. 

On the other hand, the Generalized SCLAY1S model of GTS NX is under the allowable tensile 

pressure to handle the convergence problem in case of occurring tensile to materials like Modified 

Cam Clay, Sekiguchi-Ohta models. 
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 
s α s α α α  (4.2.159) 

 

Isotropic hardening law 

The Generalized SCLAY1S model has three kinds of the hardening laws. Here, the isotropic 

hardening law is the hardening law which the general soft clay has, and it is equal to the law of the 

Modified Cam Clay, Sekiguchi-Ohta models. The following is the equation representing the general 

isotropic hardening law. 

 

 1 c p
c v

e p
dp d

 


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
   (4.2.160) 

,c cp dp 
 : Preconsolidation pressure and the change rate of the preconsolidation pressure  

p
vd

 
: The change rate of the volumetric plastic strain 

  : The gradient of the normal consolidation line 

  : The gradient of the over-consolidation line 

e  : The void raio 

 

The isotropic hardening behavior of the Generalized SCLAY1S model is equal to the equation (4.2.160) 

but the using material constants are changed and the object of hardening turns to the preconsolidation 

stress of the intrinsic yield function. 

                                                                 
24 M. Karstunen, C. Wiltafsky, H. Krenn, F. Scharinger, H.F. Schweiger, "Modelling the behaviour of an embankment on 

soft clay with different constitutive models", International journal for numerical and analytical methods in geomechanics, 

30.10, 2006, pp. 953-982. 
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   (4.2.161) 

i  : The gradient of reconstituted soil(or intrinsic) normal consolidation line 

 

 
 

The reconstituted soil without bonding and the natural soil having the initial bonding follow the intrinsic 

compression line of the picture 4.2.35 and the general compression line respectively. The general 

compression line generates the yielding at the bigger effective pressure than the reconstituted soil, 

and converges to the compression line of reconstituted soil as the bonding decreases gradually. At 

this time, generally the gradient of the post-yield compression curve   has a lot bigger value than the 

gradient of the reconstituted soil line i , but is is due to the destructuration that the bonding of natural 

soil reduces gradually. 

 

Rotational hardening law 

The rotational hardening law simulates the behavior changing the degree of anisotropy as the plastic 

strain changes, but it causes the hardening so that the anisotropy disappears as the plastic strain 

increases. 

The rotational hardening law in the simplified of the triaxial stress state is represented as follows. 
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pp
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  (4.2.162) 

,d   :  Degree of anisotropy and the change rate of the degree of anisotropy 

p
vd

 
: The change rate of volumetric plastic strain 

q

p

1

M

1



cp

Figure 4.2.35 Compression line 
of natural and reconstituted soil 
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p
dd

 
: The change rate of shear plastic strain 

  : 
q

p
  , Ratio of the shear stress and pressure 

  : Coefficient of the absolute effectiveness of the rotational hardening law 


 : Coefficient of the relative effectiveness of the rotational hardening law 

 

Here,  and  are defined as follows. 

 

0 0
,
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x x x x
x x

x x x

  
  

   
   (4.2.163) 

 

In the equation (4.2.162), it can be found that the change rate of the degree of anisotropy   is 

growing together as the volumetric plastic strain and shear plastic strain grow. However, as the degree 

of anisotropy is closer to  3 4   or  1 3  , the contribution of the volumetric plastic strain 

or the shear plastic strain affecting to the change rate of the degree of anisotropy are reduced. 

On the other hand, numerical problems happen in the dry side likewise other material models following 

the limit state theory, Macaulay bracket  included in the equation (4.2.162) is to prevent the degree 

of anisotropy effusing when the yielding occurs in the dry side. 

The rotational hardening law of generalized model changes as follows. 
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α η α η α    (4.2.164) 

,d ddα α  : Deviatoric fabric tensor and the change rate of the deviatoric fabric tensor 

η  : 
p


s

η , The raio of deviatoric stress and pressure 

 

The equation (4.2.164) is similar to the equation (4.2.162), but hardening variables are changed from 

the scalar values to the secondary tensor values corresponding to the respective stress components. 

 

Destructuration law 

The third hardening law, destructuration law simulates that the degree of bonding decreases gradually 

as the plastic strain occurs. 

 

      0 0
p pp p

v vd ddx a x d b x d ax d bd            (4.2.165) 
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,x dx  : The degree of bonding and the change rate of the degree of bonding 

a  : Coefficient of the absolute effectiveness of the destructuraion law 

b  : Coefficient of the relative effectiveness of the destructuraion law 

 

Similar to the rotational hardening law, the change rate of the degree of bonding also grows as the 

volumetric plastic strain and the shear plastic strain grow. However it is irrelevant to the sign of the 

volumetric plastic strain and only affected by its magnitude. Also, it can be found that the change rate 

of the degree of bonding is reduced as the degree of bonding x  is closer to 0x  , because it 

simulates the weakened bonding phenomenon as the plastic strain increseas as a result. 

 

 

By the development of the tunnel excavation technology, it is possible to construct structures in deep 

geological environments and bedrock, and these structures under the high confining pressure can be 

occurred brittle fracture like spalling or slabbing by the excavation of the cavity. These failure 

phenomena can not be predicted properly with perfectly elastoplastic, strain softening, brittle models 

applying the traditional failure criteria. CWFS model predicted the swelling effects of bedrock and the 

failure behavior in deep geological environments more exactly than the brittle model, therefore this 

model is included in GTS NX. 

 

Shear yield function 

CWFS model taking advantage of the Mohr-Coulomb yield function is that the hardening/softening 

behavior of table is possible. Therefore shear plastic behavior is represented as follow equation. 

 

   2 1

1
3 tan 0

3
s mcf R J I c        (4.2.166) 

  : Friction angle 

c  : Cohesion 

  : Equivalent plastic strain 

 

Shear flow rule 

The flow rule uses the following plastic potential based on the non-associated plastic flow rule. Here, It 

uses the smoothing formula in order to avoid singularity occurred in the corner. For more information, 

refer to chapter modified UBCSAND. 

 

2.21 
CWFS (Cohesion 

Weakening and Frictional 

Strengthening) 
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 (4.2.167) 

  : Dilatancy angle 

 

Shear hardening behavior 

In order to define the shear hardening, the relation of the plastic multiplier   and the hardening 

variable   are defined as follows. 

 

 21
1 sin

3
       (4.2.168) 

 

GTS NX can define the hardening behavior about cohesion c , friction angle   and dilatancy angle 

  using the table. 

 

 

Geogrid is generally used as the material for reinforcing soil/ground. Geogrid is made of the polymer 

fabric, and it is working with the weight of soil/ground. It is only resisted the tension, and mainly used 

as a sub-material of reinforced earth retaining wall. 

 

Nonlinear elastic 

The geogrid material in GTS NX shows the tension-only behavior. The stress-strain relationship of 

geogrid is shown in the following figure. 

 

tension 



 
 

The 2D geogrid shows an independent behavior each other in the axial plane. 

 

2.22 
Geogrid 

Figure 4.2.36 Tension-only 
behavior of geogrid 
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   (4.2.169) 

 

Yield function 

The yield function and plastic potential function of geogrid material are same since it follows the 

associated flow rule. 

The plastic behavior of each direction is independently and the yield condition is as follows. 

 

( ) 0yieldf    σ    (4.2.170) 

 

The yield condition of 1-axis and 2-axis can be applied differently. 
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Drained/Undrained Materials 

The pore pressure in stress analysis can be divided into the steady state pore pressure, which does 

not change with time, and the unsteady pore pressure, which changes with time or changes in 

load/boundary states, for convenience. 

 

steady unsteadyp p p      (4.3.1) 

 

Here, the state where the unsteady pore pressure is close to '0' is called the drained condition and the 

analysis under this condition is called drained analysis. Generally, it is appropriate to perform drained 

analysis for the following states. 

 

► When the change in steady state pore pressure is insignificant, due to external boundary conditions 

or use of sand like materials which have large coefficients of permeability  

► When simulating the process after consolidation, where the excessive pore pressure has been 

dissipated 

 

Pore water can display instantaneous undrained behavior, due to the use of clay like materials with 

small coefficients of permeability or external conditions such as the existence of impermeable layers. 

In this case, un-negligible unsteady pore pressure occurs for the change in external load state. This 

unsteady state pore pressure is called the excessive pore pressure. When the pore pressure is 

assumed not to change with the seepage condition time, it is determined by the permeability 

coefficient and the volume change of the porous ground due to the compressibility of the pore water. 

GTS NX uses this process of dissipating excessive pore pressure, caused by load state change, with 

time to simulate consolidation analysis. 

 

The state where excessive pore pressure occurs due to the compressibility of the pore water is called 

the undrained condition, and the analysis under this condition is called undrained analysis. The 

general undrained conditions are as follows. 

 

► When the permeability coefficient is small, or the load change is very large  

► When instantaneous behavior and safety due to load change is of interest 

 

Drained conditions do not have stiffness for change in load condition. Hence, drained materials follow 

the behavior of the ground skeleton material. 

On the other hand, undrained material models consider the stiffness for the compressibility of the pore 

water in addition to the ground skeleton material behavior. Pore water does not have shear stiffness 

and has volume change stiffness. The relationship between the excessive pore pressure change and 

volume change of the ground is as follows. 

Section 3 

3.1 
Isotropic Materials  

3.2 
Undrained Constitutive 

Equation  
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T mechw
unsteady excess

K
dp dp d

n
   m ε    (4.3.2) 

wK
 : Bulk modulus of water 

n  : Porosity 

m
 

: Normal unit vector (in 3D, [1,1,1,0,0,0]Tm ) 

mechdε  : Amount of mechanical strain change 

 

Assuming saturated linear elastic istropic materials for convenience, the modified strain-stress 

relationship can be obtained. 

 
,' el u mech

excessd d dp d  σ σ m C ε     (4.3.3) 

,el u el TwK

n
 C C mm

 
: Undrained elasticity matrix 

el
C  : Effective elasticity matrix 

 

The bulk modulus of water (
wK ) is generally a very large value and so, the undrained Poisson’s ratio 

u  is close to 0.5 and the porous material displays nearly incompressible behavior. When partial low 

order elements are used in this case, volumetric locking occurs and the accuracy of the solution falls 

greatly. Hence, modeling using high order elements is recommended for undrained analysis. 

 

To account for undrained effects and guarantee the solution accuracy, GTS NX does not use the bulk 

modulus of water directly and uses the user input undrained Poisson's ratio or Skempton factor ( B ) 

as a base to back-calculate the bulk modulus of water directly. The undrained Poisson's ratio has a 

default value of  '0.495'.  

 

Using equation (4.3.3), the equation for calculating the bulk modulus of pore water is as follows, when 

the undrained Poisson's ratio or Skempton factor is given. 

 

 
   

' '

1 2 ' 1 ' 1 2

uw
f

u

EK
K

n

 

  


 

  
   (4.3.4) 

fK
 : Bulk modulus of pore water 

', 'E   : Effective modulus of elasticity and effective Poisson's ratio 

 

The Skempton factor ( B ) is defined as the ratio between the undrained bulk modulus and bulk 

modulus of pore water. In other words,  
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f uK BK     (4.3.5) 

uK
 : Undrained bulk modulus 

 

Using equations (4.3.2) and (4.3.4), the relationship between the undrained Poisson's ratio and 

Skempton factor can be expressed as follows. 

 

3 ' (1 2 ')

3 (1 2 ')
u

B

B

 




 


 
    (4.3.6) 

 

Using this, the bulk modulus of pore water can be calculated. From equation (4.3.6), it can be seen 

that the undrained Poisson's ratio approaches '0.5' as the Skempton factor approaches '1'. 

 

Effective stiffness/effective strength 

This is the most general case where the input stiffness parameters and strength parameters are the 

parameters of the ground skeleton. Like drained analysis, GTS NX uses the input stiffness/strength 

parameters for undrained analysis. The disadvantage is that the effective strength parameters in the 

undrained state are hard to obtain through experimentation. 

 

► Available material model 

: Linear elastic material, Mohr-Coulomb, Drucker-Prager, Duncan-Chang, Hoek-Brown, Strain 

Softening, Modified Cam-clay, Jardine, D-min, Modified Mohr-Coulomb, User-supplied, Modified 

UBCSAND, Sekiguchi-Ohta 

 

Effective stiffness/undrained strength 

The undrained load path of simple material models like the Mohr-Coulomb model is known to be 

difficult to express accurately. Hence, the undrained shear stiffness, which is determined by the friction 

angle and cohesion, can be overestimated. If the empirical undrained shear stiffness (
us ) is known, 

the undrined strength can be directly input using the cohesion when the friction angle is 0. By using 

the actual undrained strength, results that satisfy the shear stiffness can be obtained. However, this 

case has the same disadvantage that the undrained load path is difficult to estimate accurately. 

 

► Available material model 

: Mohr-Coulomb, Drucker-Prager, Modified Mohr-Coulomb 

 

Undrained stiffness/undrained strength 

This method directly inputs the undrained stiffness, which considers the compressibility of the pore 

water. Hence, GTS NX does not calculate the excessive pore pressure and its effects are included in 

the calculated stress. In other words, the calculated stress is the total stress that includes the pore 

pressure. The undrained stiffness and undrained strength parameters can be directly input when 

known by lab testing. 

 

3.3 
Undrained Material Type  
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► Available material model: Linear elastic material, Mohr-Coulomb, Drucker-Prager, Modified Mohr-

Coulomb 
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Seepage Material Properties 

Darcy's Law is used to display the seepage phenomena within the ground. 

 

1
g w

w

h p


     q k kn k     (4.4.1) 

q  : Seepage velocity 

k  : Permeability coefficient matrix 

h  : Total head 

gn
 : Gravitational direction unit vector 

 

Darcy's Law expresses the proportionality between the ground seepage velocity and the total head 

gradient. Darcy's Law was originally derived for saturated soils, but various researches have shown 

that it can be applied to unsaturated flow. Also, Darcy's Law is effective for slow viscous flow and can 

be applied to most groundwater flow. 

 

For seepage materials, GTS NX uses the permeability coefficient matrix that considers only the 

diagonal component of each direction. Here, the direction is the MCS direction. 

 

0 0

0 0

0 0

x

y

z

k

k

k

 
 

  
 
 

k     (4.4.2) 

 

The seepage velocity q  has velocity units, and the actual flow velocity in the soil has a value of the 

seepage velocity q divided by the porosity of the soil. 

 

n


q
v      (4.4.3) 

 

The permeability coefficient is a criterion for how much the groundwater within the soil moves in unit 

time and it is dependent on the water content and void ratio change e of the ground. The permeability 

coefficient has the largest value at the saturated state because the path size increases with larger 

water content. Also, because water content is dependent on pore pressure, the permeability coefficient 

also changes with pore pressure. The void ratio change is considered in consolidation analysis and 

fully coupled stress-seepage analysis. The void ratio change is calculated from the initial condition of 

the void ratio. 

 

Section 4 

4.1 
Constitutive Equation  

4.2 
Permeability Coefficient  
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To express the change in permeability coefficient with pore pressure and void ratio change, GTS NX 

uses the saturated permeability coefficient satk , permeability ratio function ( )r rk k p  depending on 

pore pressure change. The kc  that defines the permeability ratio depending on the void ratio change

e . The unsaturated permeability coefficient can be found using the following equation. 

 

10 ( )k

e

c
r satk p



k k     (4.4.4) 

 

 
 

The permeability coefficient with the pore pressure is directly input as a table in GTS NX, but widely 

known permeability coefficient formulas can be used. The supported formulas in GTS NX are as 

follows and the h  represents the negative pore pressure head. 

 

Gardner function 

 

1

1 ( )
r n

k
a h




     (4.4.5) 

a , n  : Curve fitting parameters 

 

Frontal function 
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    (4.4.6) 

r  : Minimum permeability ratio 
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Figure 4.4.1 Permeability ratio 
for negative pore pressure 



 

 

200 | Chapter 1. 개요 

 

200 | Section 4. Seepage Material Properties 

 

 

 

Chapter 4. Materials 

 
ANALYSIS REFERENCE 

0H
 : Limit negative pore pressure head 

 

Van Genuchten function 
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   (4.4.7) 

a , n , m  : Curve fitting parameters 

 

When water flows within the ground, a certain amount is retained and this amount is determined by the 

ground properties and capillary suction. This is called the water content. Seepage analysis generally 

uses the volumetric water content, the ratio between the total volume and water volume. 

 

wV
nS

V
       (4.4.8) 

  : Volumetric water content 

wV
 : Water volume 

V  : Total volume 

n  : Porosity 

S  : Degree of saturation 

 

The change in volumetric water content for pore pressure is used for element calculation for seepage 

and consolidation analysis, as explained in chapter 3. Differentiating equation (4.4.8) for pore pressure 

can express it using the porosity and degree of saturation. 

 

n S
S n

p p p

  
 

  
    (4.4.9) 

 

The first term of the right hand side represents the slope of the volumetric water content for the 

saturated condition. This term is represented using the specific storage
sS , which represents the 

volumetric ratio of the water inflow or outflow in the ground due to the pore pressure head change. 

 

v sV Sn h
S

p h p 

 
 

  
    (4.4.10) 

vV
 : Void volume 

 

The second term of the right hand side represents the slope of the volumetric water content for the 

unsaturated condition. This value uses the slope of the user input soil-water characteristic curve. The 

4.3 
Volumetric Water 

Content  
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soil-water characteristic curve represents the relationship between the volumetric water content and 

pore pressure for unsaturated conditions. The general curve is shown in Figure 4.4.2. 

 

 
 

Like the permeability coefficient, the volumetric water content is directly input as a table. Widely known 

formulas can also be used. The supported formulas in are as follows. p  represents the negative pore 

pressure head.  

 

Van Genuchten fuction 

 

 1 ( )

s r
r m

nap

 
 


 


    (4.4.11) 

r  : Minimum volumetric water content 

s  : Maximum volumetric water content 

a , n , m  : Curve fitting parameters 

 

The permeability coefficient and volumetric water content above were defined individually for pore 

pressure or pore pressure head. However, nonlinear characteristics (permeability coefficient and 

volumetric water content) of actual soils are affected by the pressure head change simultaneously in a 

coupled form. 

 

GTS NX reflects these characteristics and uses ductile function forms (pressure head-water content, 

water content-permeability ratio function or pressure head-degree of saturation, degree of saturation-

permeability ratio function) to define the characteristics of unsaturated materials. When the pressure 

head-degree of saturation and degree of saturation-permeability ratio ductile function are defined, the 

volumetric water content is calculated using the porosity. 
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Figure 4.4.2 Soil-water 
characteristic curve 

4.4 
Ductile Function 
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Viscous Material Properties 

The typical behavior of visco-elastic and visco-plastic material is appeared to creep (increasing strain 

at constant stress) and stress relaxation (decreasing stress at constant strain) phenomenon. Also, 

viscous can be changed depending on the material temperature and strain rate. The visco-elastic 

property means that having both viscosity and elasticity. Similarly, the visco-plastic property means 

that having both viscosity and plasticity. GTS NX includes age independent and age dependent model 

for visco-elastic material, and Soft Soil Creep, Sekiguchi-Ohta(viscid) model for visco-plastic material. 

 

Material type 

Element type 
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Age independent ∨    ∨ ∨ ∨ ∨ ∨ 

Age dependent ∨ ∨   ∨ ∨ ∨ ∨ ∨ 

Soft Soil Creep       ∨ ∨ ∨ 

Sekiguchi-Ohta 

(Viscid) 
      ∨ ∨ ∨ 

 

At the macroscopic level, the creep phenomenon is best observed in the uniaxial creep test under 

constant load and the relaxation test under constant strain at constant temperature. A specimen 

subjected to a constant uniaxial tension exhibits three distinct phases in the time frame: primary creep 

stage, secondary creep stage and the tertiary creep stage to rupture as shown in Figure 4.5.1. In the 

first stage of so-called primary creep, we observe a decreasing strain rate. In the second stage of so-

called secondary creep, the creep strain rate is approximately constant. In the third stage of tertiary 

creep, the creep strain tare increases. The tertiary creep, similar to necking in plasticity, is considered 

as a localized instability phenomenon, which is beyond the scope of this creep analysis. The primary 

and secondary creep behavior can be used for isotropic material in GTS NX. 

 

  

Section 5 

Table 4.5.1 Available viscous 
materials for each element type 

5.1 
Age Independent Visco-

elastic Material 
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If the specimen is unloaded after some creep deformation, the elastic strain is immediately recovered 

and a portion of the creep strain is gradually recovered as shown in Figure 4.5.2. The recoverable 

portion of the creep deformation is called primary creep and the non-recoverable portion is called 

secondary creep. 

 

 
 

The Kelvin-Maxwell model is employed in the formulation of the creep capability as a generalization of 

the age independent visco-elastic material behavior. This model consists of one elastic spring and two 

viscous dampers. The Kelvin-Voigt model, which is a spring and a damper connected in parallel, 

represents the primary creep and a damper connected in series to the Kelvin-Voigt model represents 

the secondary creep. 
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
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Primary Secondary Tertiary

Rupture
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
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recovery

Elastic
recovery

Secondary 
not recoverable

Load
removed

Figure 4.5.1 Uniaxial creep test 
under constant load at constant 
temperature 

Figure 4.5.2 Creep strain 
relaxation upon load removal 
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The creep strain and time-dependent increase in creep strain under constant stress is given as 

 

 
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    (4.5.1) 

 

The creep strain can be calculated with two empirical laws as follows: 
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  (4.5.2) 

, , , , ,a b c d e f  : Material constants 

t  : Time 

 

In empirical law1,
( )

pk
A




 ,

( ) ( )
pc

A R



 
 ,

( )
sc

K




  and pk , pc ,

sc  are calculated by the primary 

and secondary differential equations for c

total  in empirical law2. 

 

The equilibrium equation of Kelvin-Maxwell creep model in the uniaxial condition is as follows: 
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Figure 4.5.3 Kelvin-Maxwell 
creep model 
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Substitution of the increase in creep strain using central difference method into equation (4.5.3) gives 

the following equation: 

 

2
2

t

 
     

 
C k e Ce s     (4.5.4) 

 

The stiffness of the primary, secondary creep elements and equivalent creep stiffness in Kelvin-

Maxwell creep model can be determined by 

 

1 2
1 2
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2 2
,  ,  

p s
p c

c c k k
k k k k

t t k k
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  
   (4.5.5) 

 

Using equation (4.5.4) and (4.5.5), the pseudo incremental strain ( ' ) which represent the stress 

relaxation is as follows: 
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  (4.5.6) 

 

In multi-axial creep deformation, a unique set of rheological parameters ( pk , pc ,
sc ) based on the 

effective stress is used and the pseudo incremental strain may be expressed with the following 

equation: 
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   (4.5.7) 

 

With the total strain increment which is the summation of elastic and creep strain increment, the 

stress-strain relationship gives the following equation: 

 

e c e c          σ D D ε ε     (4.5.8) 

e
D  : Material matrices for elasticity 

c
D  : Material tangent matrices for creep 

 

Since the summation of elastic and creep strain increment should be equal to the exception of the 

pseudo incremental strain from the total strain increment, the stress-strain relationship is as follows: 

 

'e     σ D ε ε      (4.5.9) 
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For isotropic material, the elastic-creep tangent matrix ec
D  may be conveniently obtained by 
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  (4.5.10) 

K  : Bulk modulus 

G  : Shear modulus 

 

The properties of material such as concrete are changed with time and non-mechanical deformation of 

creep and shrinkage occurs. Also, the deformation with time varies depending on the time of the stress 

occurred in creep deformation. 

 

When a uniaxial stress exerts on a concrete specimen at the age  , creep deformation with time can 

be expressed as creep compliance (total strain at the age t ), specific creep (creep function excluding 

elastic deformation) and creep coefficient (ratio of creep strain to elastic strain). Various creep 

functions can be used depending on the time of the specific stress applied. If the stress changes with 

time, the increased/decreased stress at each time requires an independent creep function. Creep 

strain at a particular time is calculated through superposition of individually calculated strains due to 

the stresses increased/decreased from the time that stress starts changing. In order to use the 

superposition method, the histories of all the element stresses are saved, and the creep strains are 

calculated from the initial steps to the present for all the stresses at every step. Extensive data storage 

and calculations are thus required to use the superposition method. However, GTS NX does not save 

the entire histories of stresses, rather uses the following integration method to increase the calculation 

efficiency. 

 

The total creep deformation from a particular time to a final time can be expressed as a superposition 

integration of creeps due to the stresses resulting from each stage. 
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5.2 
Age Dependent Visco-

elastic Material 
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( )c t
 : Creep strain at time t  

( , )C t   : Specific creep 

  : Time at which the load is applied 

 

If we assume from the above expression that the stress at each stage is constant, the total creep 

strain can be expressed as a sum of the strains at each stage. 
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Using the equation (4.5.12), the incremental creep strain between the times 
1n nt t   can be expressed 

as follows: 
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 

          (4.5.13) 

 

If the specific creep is expressed by the degenerate kernel(Dirichlet functional summation), the 

incremental creep strain can be calculated without having to save the entire stress history. 
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( )a t  : Coefficients related to the initial shapes of specific creep curves at the time of loading   

  : Values related to the shapes of specific creep curves over a period of time 

 

In GTS NX, you can use the Aging-Kelvin creep model using the five   and the Aging-Viscous creep 

model which excludes spring from the Aging-Kelvin creep model. 

 

 
 

By introducing the specific creep formula, the incremental strain can be expressed as follows: 
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Figure 4.5.4 Aging-Kelvin creep 
model 
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  (4.5.15) 

1n

c
  : Creep strain of previous stage 

E  : Elastic modulus 

 

From the above expression, it can be rearranged using  
5

1
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

    to give the following equation: 

 

"( )E          (4.5.16) 

 

Finally, including the shrinkage strain, it can be expressed as follows: 

 

"( )shE           (4.5.17) 

 

The Soft Soil Creep model simulates the creep behavior expanded to three-dimensional based on 

one-dimensional creep theory25,26,27. 
 

Unlike the primary consolidation by the dissipation of excessive pore pressure, the secondary 

consolidation is a phenomenon caused by changes in the clay structure skeleton. It has the time 

dependency behavior what the compression is occurring continuously over time. Therefore, the Soft 

Soil Creep model is suitable for representing the creep behavior with time dependency 

 

  

                                                                 
25 Buisman, K., Results from long duration settlement tests., Proc. 1st International Conference on Soil Mechanics and 

Foundation Engineering, Cambridge, 1936, Vol. 1, p. 103-107. 
26  Bjerrum, L., Engineering geology of Norwegian normallyconsolidated marine clays as related to settlements of 

buildings (Seventh Rankine Lecture) Geotechnique, 1967, Vol. 17, p. 83-118. 
27 Garlanger, J.E., The consolidation of soils exhibiting creep under constant effective stress. Geotechnique, 1972, Vol. 22, 

p. 71-78. 

5.3 
Soft Soil Creep 
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Characteristics 

The Soft Soil Creep model is to simulate the time-dependent secondary consolidation (creep behavior), 

the stress-dependent stiffness and the failure behavior according to the Mohr-Coulomb criterion. 

 

1D creep model and 3D extended model 

The 1D creep strain is expressed as the following equation what the total strain rate is the sum of an 

elastic strain e  and a time-dependent creep strain c . The creep strain can be considered to a time-

dependent creep strain, i.e., a visco-plastic strain. 
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   (4.5.18) 

e  : Elastic strain rate 

c  : Creep strain rate 

  : Swelling index 

  : Compression index 

0e  : Initial void ratio 

  : Creep index 

  : Reference time, precisely one day28 

p  : Pre-consolidation stress 

                                                                 
28 Vermeer, P. A., & Neher, H. P., A soft soil model that accounts for creep, Proceedings of the international symposium 

'Beyond 2000 in Computational Geotechnics', 1999, Amsterdam, p.249–261. 

 log time

strain

SecondaryPrimary

Figure 4.5.5 Primary and 
secondary consolidation curve 
with time 
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From the above equation of 1D creep behavior, the total strain rate of 3D extended Soft Soil Creep 

model can be expressed as follows: 
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ε ε ε D σ
σ    (4.5.19) 

D  : Elasticity matrix 
eqp  : Equivalent pressure 

pp  : Pre-consolidation pressure 

 

From the above equation (4.5.19), the volumetric creep strain c

v  can be expressed with the following 

equation: 
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    (4.5.20) 

 

If the equation (4.5.20) is integrated over time t  for constant eqp , the volumetric creep strain 

increment is given as 
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   (4.5.21) 

 

Equivalent pressure and yield function 

Using the well-known stress invariants for isotropic stress p  and deviatoric stress q  , the equivalent 

pressure eqp  in Soft Soil Creep model can be defined as follows: 

 

 
2 2eqp p p q       (4.5.22) 

  : Cap parameter in Modified Mohr-Coulomb model 

 

  is constant which defined by input parameter or ground material. 

 

The Soft Soil Creep model has the Modified Mohr-Coulomb model criterion without strain hardening to 

prevent excessive deviatoric stress. Therefore, the total strain rate (4.5.19) additionally includes the 

plastic strain rate by shear failure as follows: 
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e p c          (4.5.23) 
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   (4.5.24) 

g  : Plastic potential function 
  : Dilatancy angle 

 

The plastic strain rate follows the flow rule of Modified Mohr-Coulomb model and for fine grained, 

cohesive soils, the dilatancy angle tends to be small, it may often be assumed that dilatancy angle is 

equal to zero. 

 

 
 

The Viscid type of Sekiguchi-Ohta model follows the nonstationary flow surface theory 29  among 

various visco-plastic theories for simulating creep behavior of ground. The nonstationary flow surface 

theory model is basically based on the plastic model, but there is a difference that it contains the time 

dependent function. 

The Viscid type follows the assumption30  that the creep is in progress with a constant stress state in 

initial state ground before loading. 

Like Inviscid type, it resolves a numerical problem using the specificity algorithms of Inviscid type since 

it contains a stress state that the plastic flow is only undetermined in the yield function. However, 

except the specificity problem, convergence problem occurs when the stress state locates dry side due 

to the model characteristics. In GTS NX, it resolves convergence problem by correcting the softening 

behavior in the stress state of dry side. 

 

Yield function 

                                                                 
29 Liingaard, M., Augustesen, A., Lade, P. V., "Characterization of models for time-dependent behavior of soils", 

International Journal of Geomechanics, 2004, 4.3: 157-177. 
30 Sekiguchi, H. and Ohta H., "Induced anisotropy and time dependency in clays", 9th ICSMFE, Tokyo, Constitutive 

equations of Soils, 1977, 229-238 
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Figure 4.5.6 Equivalent 
pressure shape and yield 
function 

5.4 
Sekiguchi-Ohta (Viscid) 
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The flow function of Viscid type is defined as follows: 
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  (4.5.25) 

 

 

 

 

 

The  f   of equation (4.5.25) is defined as follows: 
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    (4.5.26) 

 

The detailed explanation of equation (4.5.26) can be found in ‘2.16. Sekiguchi-Ohta (Inviscid)’. 

However, in case of directly using the flow function of equation (4.5.25) for yield function, the 

problem31 that elastic range cannot be defined occurs since the left term always has a positive value. 

In this case, the associated plastic flow rule cannot be used due to the violation of Hill's principle of 

maximum plastic work. In order to resolve this problem, Iizuka and Ohta32 transformed the equation 

(4.5.25) as follows: 

 

     , , 0vp

vf h f h t        (4.5.27) 

 

Here, the hardening function ( h ) is defined as follows: 
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, ln exp 1
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v t
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     

   (4.5.28) 

 

However, there is a problem that the hardening function ( h ) is not defined when the initial visco-

plastic volumetric strain rate is zero (
0 0vp

v  ). Therefore, the numerical problem is resolved by setting 

the initial value of the visco-plastic volumetric strain rate ( vp

v ) which makes  1, 0vp

vh t  at 1t  when 

the stress state is judged to the visco-plastic state violating the initial yield function with load change or 

overtime. 

                                                                 
31 Takeyama, T., Pipatpongsa, T., Iizuka, A., Mizuta, T., Ohno, S., Ohta, H., "Soil/water coupled FE Simulation of field 

performance of 5 embankments placed on homogeneous clay." Proceedings of the Sri Lankan Geotechnical Society's First 

International Conference on Soil & Rock Engineering, 2007 
32 Iizuka, A., Ohta, H., "An interpretation of Sekiguchi and Ohta's model based on viscoplasticity theory.", Proceedings of 

the 34th Japanese National Conference on Geotechnical Engineering, 1999, 595-596 

  : Coefficient of secondary compression 

0  : Change speed of initial volumetric strain rate 

vp

v  : Visco-plastic volumetric strain 
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   (4.5.29) 

 

Figure (4.5.7) shows the yield function at triaxial stress state. Like the Cam-Clay material model, it is 

called that the right is wet side and the left is dry side based on the critical state line. Generally, the 

material model which follows critical state theory shows the hardening behavior at wet side and the 

softening behavior at dry side. However, in the viscid type of Sekiguchi-Ohta model, it is known that 

the over-consolidation ratio is high and the convergence problem33 occurs when the stress state 

locates dry side due to the nature of yield function. In GTS NX, the convergence problem is resolved 

by preventing the softening behavior at dry side. 

 

p

q
C.S.L

Dry side Wet side

yield function

 
 

                                                                 
33 Takeyama, T., Ohno, S., Pipatpongsa, T., Iizuka, A., Ohta, H., "The stress update using implicit integration for the viscid 

version of sekiguchi-ohta model", Technical report, 2005 

Figure 4.5.6 Simplified yield 
function and critical state line in 
triaxial stress state 
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Hysteresis Material Properties 

When the crack and yield occurs by irregular cyclic load, the displacement history to the current affects 

the later relationship between restoring force and displacement. The relationship between force and 

deformation for uniaxial load is called the Skeleton curve. When the cyclic load is applied based on the 

Skeleton curve, the rule of the relationship between force and deformation for unloading and reloading 

is called hysteresis model. The properties of each hysteresis model are explained in this chapter. 

Table 4.6.1 lists the available hysteresis models for each element. 

 

Hysteresis model 
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Multilinear ∨ ∨ ∨        

Normal Bilinear ∨ ∨ ∨        

Kinematic ∨ ∨ ∨        

Origin-Oriented ∨ ∨ ∨        

Peak-Oriented ∨ ∨ ∨        

Clough ∨ ∨ ∨        

Degrading ∨ ∨ ∨        

Takeda ∨ ∨ ∨        

Modified Takeda ∨ ∨ ∨        

Modified Ramberg 

Osgood 
∨ ∨ ∨   ∨ ∨ ∨ ∨ ∨ 

Modified Hardin-

Drnevich 
∨ ∨ ∨   ∨ ∨ ∨ ∨ ∨ 

 

  

Section 6 

Table 4.6.1 Available hysteresis 
models for each element type 
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Response points at initial loading move about on a bilinear skeleton curve. 

 

 
 

Hysteresis rule 

► In case of max 1D D , it is a linear elastic and moves on a elastic gradient straight line crossing the 

origin. 

► In case of the deformation D  first overpass 
1D , or the maximum deformation point to the current, it 

moves on a second gradient straight line. 

► In case of unloading in the condition of 
1D D  , 

1D D  , it moves on a second gradient straight 

line by unloading a elastic gradient according to the Masing rule. 
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6.1 
Normal Bilinear model 

Figure 4.6.1 Normal Bilinear 
model 
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Response points at initial loading move about on a trilinear skeleton curve. The unloading stiffness is 

identical to the elastic stiffness, and stiffness reduction after yielding is possible only for positive (+) 

and negative (-) symmetry. In case of kinematic model, the interaction of axial force and biaxial 

bending component can be considered by the plastic theory. 

 

 
 

Uniaxial hysteresis rule 

► In case of max 2D D , it behaves like a bilinear. 

► In case of max 2D D , it moves on a third gradient straight line. 

► In case of unloading, it moves on a elastic gradient according to the Masing rule. 

 

Multi-axial hysteresis rule 

It considers the interaction between axial force and biaxial bending component by the kinematic 

hardening rule based on the plastic theory. The yield domain is the following equation. 
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6.2 
Kinematic model 

Figure 4.6.2 Kinematic model 
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  (4.6.1) 
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1io 

im

1im 
conjugate point

maxM  :  Maximum bending yield strength 

balP  :  Axial force at the balanced failure 

maxP  :  Axial yield strength 

 ,  ,   :  An exponent related to interaction curve 

Figure 4.6.3 Movement of yield 
surface and stiffness change 
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There are two yield surfaces corresponding to a trilinear skeleton curve and these two yield surfaces 

follow the hardening rule of modified Mroz. 

 

 

Response points at initial loading move about on a trilinear skeleton curve. The response point moves 

towards the origin at the time of unloading. When it reaches the skeleton curve on the opposite side, it 

moves along the skeleton curve again. 
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6.3 
Origin-Oriented model 

Figure 4.6.4 Origin-Oriented 
model 
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Response points at initial loading move about on a trilinear skeleton curve. The response point moves 

towards the maximum displacement point on the opposite side at the time of unloading. If the first 

yielding has not occurred on the opposite side, it moves towards the first yielding point on the skeleton 

curve. 
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6.4 
Peak-Oriented model 

Figure 4.6.5 Peak-Oriented 
model 
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Response points at initial loading move about on a bilinear skeleton curve. As the deformation 

progresses, the unloading stiffness gradually becomes reduced. When the loading sign changes at the 

time of unloading, the response point moves towards the maximum displacement point in the region of 

the progressing direction. If yielding has not occurred in the region, it moves towards the yielding point 

on the skeleton curve. Where unloading reverts to loading without the change of loading signs, the 

response point moves along the unloading path. And loading takes place on the skeleton curve as the 

loading increases. 

 

 
 

Hysteresis rule 

► In case of unloading in the condition of 1D D , it moves on the gradient of unloading stiffness, 
rK  . 
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   (4.6.2) 
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6.5 
Clough model 

Figure 4.6.6 Clough model 

oK  :  Initial elastic stiffness 

1D  :  Yield displacement in the region of the first unloading 

maxD  :  Maximum displacement in the region of tension 
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► If the sign of the load changes in the unloading process, it moves toward the maximum deformation 

point of the opposite side. If the opposite side is not yield, 
1D  is the maximum deformation point. 

 

 

Response points at initial loading move about on a trilinear skeleton curve. At unloading, the 

coordinates of the load-deformation move to a path along which the maximum deformation on the 

opposite side can be reached due to the change of unloading stiffness once. If yielding has not 

occurred on the opposite side, the first yielding point is assumed to be the point of maximum 

deformation. As the maximum deformation increases, the unloading stiffness gradually decreases. 

 

 
 

Hysteresis rule 

► In case of unloading in the condition of 2D D , it behaves like a bilinear. 

► In case of unloading in the condition of 2D D , it moves on the gradient of unloading stiffness, 
rK  . 
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1P
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 max max,D P

 min min,D P
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1D

minD  :  Maximum displacement in the region of compression 

  :  Constant for determining unloading stiffness 

6.6 
Degrading model 

Figure 4.6.7 Degrading model 
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    (4.6.3) 

 

 

 

 

 

 

 

 

 

 

 

Response points at initial loading move about on a trilinear skeleton curve. The unloading stiffness is 

determined by the location of the unloading point on the skeleton curve and whether or not the first 

yielding has occurred in the opposite region. 

 

 
 

Hysteresis rule 

 

P
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1P

1P

2P

oK  :  Initial elastic stiffness 

maxD  :  Maximum displacement in the region of tension 

minD  :  Maximum displacement in the region of compression 

maxP  :  Maximum force in the region of tension 

minP  :  Maximum force in the region of compresion 

2P  :  Yield stiffness in the region of the second unloading 

2D  :  Yield displacement in the region of the second unloading 

6.7 
Takeda model 

Figure 4.6.8 Takeda model 
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► In case of the deformation D  first overpass 
1D , the opposite first yielding is the maximum 

displacement point on the opposite side. 

► In case of unloading on the skeleton curve, the coordinates of the load-deformation moves toward 

the maximum deformation point of the opposite side. (Rule 1) 

► In case of reloading before it reaches to the maximum deformation point of the opposite side, the 

point progresses along the same unloading curve. (Rule 2) 

► In case of reaching to the skeleton curve, it moves along the skeleton curve. (Rule 3) 
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Figure 4.6.9 Hysteresis rule of 
the Takeda model after the first 
yielding 
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► In case of the deformation D  first overpass 2D

, it moves along the skeleton curve. (Rule 5) 

► In case of unloading on this curve, it moves on the gradient of unloading stiffness, 
rK  . If the 

opposite side is before experiencing the first yielding, the range of rK 

 is the 1P
. (Rule 6) 
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    (4.6.4) 

 

► If the point exceeds the 1P
, it moves toward the second yielding point. (Rule 9) 
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Figure 4.6.10 Hysteresis rule of 
the Takeda model after the 
second yielding 
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► In case of unloading on the straight line toward the maximum deformation point of the opposite side, 

it enters to the inner loop. (Rule 11) 

► In case of the sign of restoring force changes in the process of unloading in the inner loop, it returns 

to the previous unloading point of the opposite side. (Rule 12) 
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Figure 4.6.11 Hysteresis rule of 
the inner loop Takeda model 

6.8 
Modified Takeda model 

Figure 4.6.12 Modified Takeda 
model 
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Hysteresis rule 

 

 
 

► In case of the deformation D  first overpass 
1D , the opposite first yielding is the maximum 

deformation point of the opposite side. 

► In case of unloading on the skeleton curve, the coordinates of the load-deformation moves toward 

the maximum deformation point of the opposite side. (Rule 1) 

► In case of reloading before it reaches to the maximum deformation point of the opposite side, the 

point progresses along the same unloading curve. (Rule 2) 

► In case of reaching to the skeleton curve, it moves along the skeleton curve. (Rule 3) 
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Figure 4.6.13 Hysteresis rule of 
the modified Takeda model 
after the first yielding 



 

 

ANALYSIS REFERENCE Chapter 4. Materials 

Section 6. Hysteresis Material Properties | 227 

 

 

 

 
 

► In case of the deformation D  first overpass 2D

, it moves along the skeleton curve. (Rule 4) 

► In case of unloading on this curve, it moves on the gradient of unloading stiffness, 
rK  . If the 

opposite side is before experiencing the second yielding, the opposite second yielding is the maximum 

deformation point of the opposite side. (Rule 5) 
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► At the time when the sign changes, , the coordinates of the load-deformation moves toward the 

maximum deformation point of the opposite side. (Rule 8) 

► In case of unloading on the straight line toward the maximum deformation point of the opposite side, 

it enters to the inner loop. (Rule 9) 

► At the time when the sign changes, the coordinates of the load-deformation moves toward the 

maximum deformation point of the opposite side. (Rule 10) 
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Figure 4.6.14 Hysteresis rule of 
the modified Takeda model 
after the second yielding 
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The Ramberg-Osgood model is originally proposed for the dynamic model of metal material, but 

modified by Tatsuoka. 

 

 
 

Hysteresis rule 

► In the initial loading, it moves along the following skeleton curve. 
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► The hysteresis curve is as follows: 
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   (4.6.7) 

 

Considering the uniaxial condition, the hysteresis curve is expressed as follows: 
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6.9 
Modified Ramberg-

Osgood model 

Figure 4.6.12 Modified 
Ramberg-Osgood model 

oG  :  Initial stiffness (Shear modulus) 

r  :  Reference shear strain 

maxh  :  Maximum damping constant 
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oE


          (4.6.8) 

 

In the multi-axial condition, it is divided by the hydrostatic pressure and the deviatoric stress, and 

expressed as the following equation organized by the deviatoric stress and the deviatoric strain. 
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If the equivalent deviatoric strain 2
:

3
eq dev dev  ε ε  and the equation (4.6.9) are used, it is expressed 

as the equation (4.6.10). 

 

 
2

1
3

o eq eq eq eqE            (4.6.10) 

 

The equivalent tangent stiffness is calculated by the following equation. 
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    (4.6.11) 

 

The poisson`s ratio is assumed to a constant regardless of the stress state, and the equivalent elastic 

modulus is calculated by the equation (4.6.11). The stiffness matrix of 3D can be expressed by using 

the equivalent elastic modulus as follows: 
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oE  :  Initial stiffness 

eq  :  von Mises stress 



 

 

Chapter 4. Materials 

 
ANALYSIS REFERENCE 

230 | Chapter 1. 개요 

 

230 | Section 6. Hysteresis Material Properties 

 

 

 

This model defines the hysteresis curve by applying the Masing rule to the Hardin-Drnevich model 

suggested only the skeleton curve. 

 

 
 

Hysteresis rule 

► In the initial loading, it moves along the following skeleton curve. 
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► The hysteresis curve is as follows: 
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Considering the uniaxial condition, the hysteresis curve is expressed as follows: 
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6.10 
Modified Hardin-Drnevich 

model 

Figure 4.6.12 Modified Hardin-
Drnevich model 

oG  :   Initial stiffness (Shear modulus) 

r  :   Reference shear strain 
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In the multi-axial condition, it is divided by the hydrostatic pressure and the deviatoric stress, and 

expressed as the following equation organized by the deviatoric stress and the deviatoric strain. 
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If the equivalent deviatoric strain 2
:

3
eq dev dev  ε ε  and the equation (4.6.16) are used, it is expressed 

as the equation (4.6.17). 
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The equivalent tangent stiffness is calculated by the following equation. 
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The poisson`s ratio is assumed to a constant regardless of the stress state, and the equivalent elastic 

modulus is calculated by the equation (4.6.11). The stiffness matrix of 3D can be expressed by using 

the equivalent elastic modulus as follows: 
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oE  :   Initial stiffness 

eq  :   von Mises stress 


