Release Note

Release Date : May. 2022

Product Ver. : midas Gen 2022 (v2.1) and Design+2022(v1.2)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• midas Gen

1. New Taiwanese RC Code : TWN-USD111	4
2. Column Strip Design & Checking : KDS 41 30 : 2018 (Korean Code)	8
3. Fixes and Improvement	 10

Added TWN-USD111 Code for RC Design

Added Concrete/Rebar DB and Material as per CNS560-18

S	et Rebar Material		
Preferences Environment General View Data Tolerances Property Load Results Design/Load Code Notice & Help Graphics Output Formats Formats - Formats Formats - Forces	Design Code Load Code Steel Design Code: TWN-ASD96 ~ National Annex: Recommended ~ Cold Formed Steel Design Code: AISI-CFD08 ~ National Annex: Recommended ~	Concrete Design Code: TWN-USD111 ~ National Annex: Italy ~ Rebar Material Code CNS560-18(RC) ~ Material DB S0420W ~	SRC Design Code: TWN-SRC 100 ~ Rebar Material Code CNS560-18(RC) ~ Material DB SD280W ~
Save Changes Upon OK	Default All	SD280 SD280W SD420 SD420W SD490W SD550W SD550W	OK Cancel

Rebar strength as per CNS560-18

	Yield Strength	
	Fy (kgf/cm ²)	
SD280	2,800	
SD280W	2,800	
SD420	4,200	
SD420W	4,200	
SD490W	5,000	
SD550W	5,600	
SD690	7,000	

	Concrete N			
aterial Data				
General Material ID 1		Name	Girder	
Elasticity Data				
Type of Design Concre	ete 🗸 🗸	Steel		_
		Standard		\sim
		DB		~
		Product		\sim
		Concrete		
		Standard	CNS560-18(RC)	\sim
Type of Material			Code	\sim
	rthotropic	DB	C210	\sim
Steel			C210	
Modulus of Elasticity :	0.0000e+00	kgf/cm²	C245 C280	
Poisson's Ratio :	0		C315 C350	
Thermal Coefficient :	0.0000e+00	1/[C]	C420	
Weight Density :	0	kaf/cm³	C700	
Lise Mass Density	0	kaf/cm³/a		
Modulus of Elasticity :	1.7583e+05	kaf/cm2		
Poisson's Patio	0 167	kgr/cm-		
Thermal Coefficient	1 00000 05			
inermai coefficient :	1.0000e-05	1/[C]		
Weight Density :	0.0024	kgf/cm³		
Use Mass Density:	2.447e-06	kgf/cm³/g		

Added TWN-USD111 Load Combinations

For Concrete Design				Table 5.3	1 Loa	ad Combinations		
Automatic Generation of Load Combinations X	Provision			Load factors a	nd co	ombinations	Remark	
Option Add Replace Code Selection			1.4 D				D · Dead load	
Code Selection O Steel Concrete O SRC			1.2D+1.6L + 0.5(Lr or S or R) 1.2D +1.6(Lr or S or R) + (1.0L or 0.8W)				 D : Dead load L : Live load Lr : Roof live load 	
Cold Formed Steel Footing Aluminum	IFormed Steel OFooting ninum Strength							
Design Code : TWN-USD111 ~			1.2D ± 1	6W + 1.0L +0.5(Lr	or S	or R)	S : Snow load	
Scale Up of Response Spectrum Load Cases	Load Complina	tions	12D + 10E + 10I + 02S				• R : Rain load	
Scale Up Factor : 1 RX V				6W			W : Wind load	
Factor Load Case Add							 E : Earthquake load 	
1.540 RY Delete			0.9D ± 1	UE				
Manipulation of Construction Stage Load Case ST : Static Load Case CS : Construction Stage Load Case Image: ST Only CS Only ST Only CS Only	Load Co Gener	ombinations al Steel Design	Concrete Design SF	C Design Cold Formed Steel Design	Footing	Design Aluminum Design	X	
Consider Orthogonal Effect	Load	d Combination List				Load Cases and Factors		
Set Load Cases for Orthogonal Effect	-	No Name	Active Type	Description	- î	LoadCase	Factor	
SRSS(Square-Root-of-Sum-of-Squares)		2 cLCB2	Stren Add	1.2(D) + 1.6(L) + 0.5LR		WX(ST)	1.6000	
Generate Additional Load Combinations		3 cLCB3	Stren Add	1.2D + 1.6LR + 1.0L		LL(ST)	1.0000	
for Special Seismic Load		4 cLCB4	Stren Add	1.2D + 1.6LR + 0.8WX	-	LR(ST)	0.5000	
for Vertical Seismic Forces		5 cLCB5	Stren Add	1.2D + 1.6LR + 0.8WY	-	<u>*</u>		
Factors for Seismic Design		7 cLCB7	Stren Add	1.2D + 1.6LR - 0.8W/Y				
Will Execute Construction Stage Analysis		8 cLCB8	Stren Add	1.2D + 1.6WX + 1.0L + 0.5LR				
Consider Losses for Prestress Load Cases		9 cLCB9	Stren Add	1.2D + 1.6WY + 1.0L + 0.5LF	2			
Transfer Stage : 1 Define		10 cLCB10) Stren Add	1.2D - 1.6WX + 1.0L + 0.5LR				
Service Load Stage : 1 Factors		11 cLCB11	Stren Add	1.2D - 1.6WY + 1.0L + 0.5LR				
OK Cancel		12 cLCB12	Stren Add	1.2D + 1.0EX + 1.0L				
Caricer		13 CLCB13	Stren Add	1.2D + 1.0EY + 1.0L				
		14 CLCB14	Stren Add	1.2D - 1.0EX + 1.0L				
		16 cLCB16	Stren Add	0.9D + 1.6WX				
		17 cLCB17	Stren Add	0.9D + 1.6WY				
		18 cLCB18	Stren Add	0.9D - 1.6WX				
		19 cLCB19	Stren Add	0.9D - 1.6WY				

20 cl CB20 Stren Add 0 9D + 1 0EX

Design > RC Design Code > TWN-USD111 ,When Apply Special Provision for Seismic Design checked

SCWB Design/Checking Method O Design Strength Nomin Don't consider the k1 factor Reduction factor of column t	nal Strength
	0.00

✓ Use Tips

Add options for SCWB Design /Checking method

- 1) Can ignore the k1 factor. In this case k1 is considered as 1.0
- 2) Define the reduction factor of column, Φc factor. If 'Nominal Strength' is selected, reduction factor will be used

Check the interaction for biaxia	ıl shear	
Check the interaction for biax	cial shear	
Use Tips		

Added options for Biaxial Shear Strength for columns

The interaction of one-way shear forces acting along the orthogonal axes needs to be considered as per TWN-USD111 (same as ACI 318-19). The provision 22.5.1.11 states that : "if shear ratio is more than 0.5 by each directions, Eq.(22.5.1.11)shall be satisfied."

Biaxial shear strength was not considered in the previous code. Added an option to check the interaction of shear force ratio.

✓ Reference Code

22.5.1.11
 若
$$\frac{V_{u,x}}{\phi V_{n,x}}$$
>0.5 且
 $\frac{V_{u,y}}{\phi V_{n,y}}$ >0.5 ,則應符合式 (22.5.1.11)。
 From TWN-USD111

 $\frac{V_{u,x}}{\phi V_{n,x}} + \frac{V_{u,y}}{\phi V_{n,y}} \le 1.5$
 (22.5.1.11)。

22.5.1.11 If
$$\frac{v_{u,x}}{\phi v_{n,x}} > 0.5$$
 and $\frac{v_{u,y}}{\phi v_{n,y}} > 0.5$ then Eq. **From ACI318-19** (22.5.1.11) shall be satisfied.

(22.5.1.11)

 $+\frac{v_{u,y}}{\phi v} \leq 1.5$

MIDAS

2. Column Strip Design & Checking : KDS 41 30 : 2018 (Korean Code)

Produce the Column Strip Design / Checking results considering the unbalanced moment as per KDS

Accurate and quick design results can be secured through strip design considering the unbalance moment.

2. Column Strip Design & Checking : KDS 41 30 : 2018 (Korean Code)

Supports automatic calculation of effective beam width method by Grossman's and Choi & Song's formula.

Add/Modify Effective Beam Width			Create Effective Beam
Add/Modify Effective Beam Name : EB1 Description :			Tree Menu 7 × Create Effective Beam
i-Node Width (Left) 1,17851311 m Width (Right) 1,17851311 m j-Node Width (Left) 1,17851311 m Width (Right) 1,17851311 m OK Cancel Apply	Calculation of Effective Width	Calculation of Effective Width	Create Effective Beam
Design Analysis Control Design Analysis Control Stiffness Control EBWM O FEM OK Cancel	Method : Choi and Song Span * \$1 : 4.45 m * 2: 5.15 m #3 : 0.5 m C 2: 5.15 m #3 : 0.5 m C 2: 5.15 m Column Size Cl : 0.45 m C 2: 1.35 m Location of Effective Beam Interior • • Joint • • 2:955 0K Cancel Joint Calculate 0/K Cancel • Choi and Song's Formula	$ \begin{array}{c} \mathfrak{e}1: \ 4.45 \ m \ \mathfrak{e}2: \ 5.15 \ m \ \mathbf{m} \ \mathbf{e}3: \ 0.5 \ m \ \mathbf{m} \ \mathbf{e}3: \ 0.5 \ \mathbf{m} \ \mathbf{e}3: \ $	Effective Beam Name EB1 Material No. Name 1 1: C30 Nodal Connectivity Nodal Connectivity Ortho Intersect: Node Elem Apply Close
		Grossman's Formula	

Quick & efficient workflow with automatic calculation of effective beam widths.

Other major improvements and bug fixes are as follows.

Thank you very much for your interest and participation in program improvement.

[midas Gen 2022 v2.1] Fixes and Improvements

- [RS Design spectrum] DPT.1301/1302-61 enabled regardless of this country code option
- [SCWB Design/Checking Method] Improvement of design strength method calculation method of ACI series
- [Wall Design Result] NTC2018>Wall : Improved so that wall ID + Story / Wall ID (WID) outputs the same Asw-H result
- [RC Two way shear] Improved to find the punching shear parameter by adjusting the tolerance at the intersection with the element side
- [midas GSD] Modified so that the load combination of the linked Gen is loaded the same from GSD
- [RC column] Correction of As_H requirement(Horizontal reinforcement) of column according to unit conversion in graphic report
- [EC3 Cold Formed Design] For cross-sections that are symmetrical about the y y axis, apply the Ncr calculation formula according to Eq.6.35

