Release Note

Release Date : Mar. 2022

Product Ver. : midas Gen 2022 (v1.1) and Design+2022(v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• midas Gen

1) New American RC Code : ACI318-19 (for US.SI)	 4
2) Beam-Column Joints check for Existing Building as per NTC2018	7
3) Crack Control Check for RC Column as per EC2:04 & NTC	 0
4) SCWB Design/Checking Method Option as per ACI Series	 2
5) Thailand Code : DPT (Wind and Seismic load)	 4
6) Addition of Thailand DB(TIS for SI,MKS)	 5
7) Addition of Taiwan DB (CNS560-18)	 7
8) Addition of Indonesia DB(SNI)	 8
9) Earthquake Scaling Calculator	 9
10) Preview function of Start Page	 2
11) Revit 2022 Interface	 3

1. New American RC Code : ACI318-19 (US.SI)

Added ACI318-19(US)/ACI318M-19(SI) Code for RC Design

1. New American RC Code : ACI318-19 (US.SI)

Added ACI318-19 Load combinations

For Concrete Design			
Automatic Generation of Load Combinations X	r		
Option			
Add O Replace Add Envelope			_
O Steel Concrete O SRC	Provision	Load factors and combinations	Remark
Cold Formed Steel		1.4 (D+F)	
O Aluminum		$\frac{1}{2}(D+E+T) + 16(1+H) + 0.5(1 r or P)$	
Design Code : ACI318-19 ~		1.2(D+1+1)+1.0(L+11)+0.3(L+01)(L+11)	
Scale Up of Response Spectrum Load Cases	Strongth	1.2D +1.6(Lr or R) + (1.0L or 0.5W)	D : Dead Load
Scale Up Factor : 1 RX V	Strengtn	1.2D ± 1.0W + 1.0L +0.5(Lr or R)	F : Fluid Load
Factor Load Case Add 1.130 RX Modify	Load Complitations	1.2D ± 1.0E + 1.0L	T : Temperature Load
1.540 RY Delete		0.9D ± 1.0W + 1.6H	H : Lateral pressure load of soil and water in soil
Wind Load Factor Strength-level Service-level		0.9D ± 1.0E + 1.6H	Lr : Roof live load
Consider Lateral Soil Pressure Factor		D + F	R : Rain load
Load Factor : 0.9	Allowable stress	D+H+F+L+T	W : Wind load
ST : Static Load Case	Load Combinations	D + H + F + (Lr or R)	• E : Earthquake load (=Eh + Ev)
CS : Construction Stage Load Case ST Only CS Only ST+CS		D + H + F + 0.75[L+T(Lr or R)]	• Em : maximum effect of horizontal and vertical ea
Consider Orthogonal Effect		D + H + F ± (0.6W or E / 1.4)	• Ω : Seismic force amplification factor
Set Load Cases for Orthogonal Effect			- Eh : Herizentel eerthqueke leed
SRSS(Square-Root-of-Sum-of-Squares)		1.2D + 1.0L +1.0Em	 En : Honzonial earthquake load (not provided in Gen2)
Generate Additional Load Combinations	a		
✓ for Special Seismic Load ✓ for Vertical Seismic Forces	Special load		022 (1.1)
Factors for Seismic Design	combinations		
Will Execute Construction Stage Analysis		0.9D ± 1.0Em	
Consider Losses for Prestress Load Cases			
Transfer Stage : 1 Define			
Service Load Stage ;			
OK Cancel			

1. New American RC Code : ACI318-19 (US.SI)

Added New Rebar DB and Material as per ASTM19

Rebar strength as per ASTM 19

	Tensile Strength	Yield Strength
	Fu (psi)	Fy (psi)
Grade 40	60,000	40,000
Grade 60	80,000	60,000
Grade 80	100,000	80,000
Grade 100	117,000	10,000

Rebar Information								
Re	bar Code	ASTM	I				\sim	
Γ	СНК	Name	Dia (in)	Area (in²)	Dia(Out) (in)	Weight (kips/in)	Â	
		#3	0.3750	0.1100	0.3750	0.0000	1	
		#4	0.5000	0.2000	0.5000	0.0001	1	
		#5	0.6250	0.3100	0.6250	0.0001		
		#6	0.7500	0.4400	0.7500	0.0001		
		#7	0.8750	0.6000	0.8750	0.0002		
		#8	1.0000	0.7900	1.0000	0.0002		
		#9	1.1280	1.0000	1.1280	0.0003		
		#10	1.2700	1.2700	1.2700	0.0004		
		#11	1.4100	1.5600	1.4100	0.0004		
		#14	1.6930	2.2500	1.6930	0.0006		
		#18	2.2570	4.0000	2.2570	0.0011		
							¥	
					OK	Close	2	

Rebar DB as per ASTM19 & Design rebar setting

2. Beam-Column Joints Check for Existing Building as per NTC2018

Beam-Column Joints Capacity Check for Existing Building

• Design > result > Concrete Design > Existing Joint Check

2. Beam-Column Joints Check for Existing Building as per NTC2018

Beam-Column Joints Check for Existing Building

Design > result > Concrete Design > Existing Joint Check

✓ Use Tips

- 1) This check option is activated only with NTC2018.
- 2) If 'Apply Special Provision for Seismic Design' of concrete design code is active, this check option can't be activated.
- 3) This check must be performed only for 'Not Confined Joint' as defined in § 7.4.4.3 of the NTC
- This check is 'existing structure review', so it is calculated using the beam reinforcement information entered by the user.

✓ Note

C8.7.2.3.5 Beam and Column for Existing Building as per CIRCOLARE NTC2018

- [Calculation & check of diagonal tensile stress for beam-column joint]

$$\sigma_{jt} = \left| \frac{N}{2A_j} - \sqrt{\left(\frac{N}{2A_j}\right)^2 + \left(\frac{V_j}{A_j}\right)^2} \right| \le 0.3\sqrt{f_c} (f_c \text{ in } MPa) \qquad [C8.7]$$

[Calculation & check of diagonal compressive stress for beam-column joint]

$$\sigma_{jc} = \frac{N}{2A_j} + \sqrt{\left(\frac{N}{2A_j}\right)^2 + \left(\frac{V_j}{A_j}\right)^2} \le 0.5 f_c(f_c inMPa)$$

Where,

1) N : Axial force acting on the upper column (+ : compressive,-:tensile)

- 7.2.11] **2)** *Vj* : Total shear acting on the joint, obtained as a sum algebraic of the shear transmitted by the upper pillar and of the horizontal stresses transmitted by the upper parts of the beams
- [C8.7.2.12] **3)***Aj* : *bj* * *hjc* where *bj* and *hjc* are defined in § 7.4.4.3.1 of the NTC

3. Crack Control Check for RC Column as per EC2:04 & NTC

RC Column Crack Width Check as per EC2:04 & NTC2018

3. Crack Control Check for RC Column as per EC2:04 & NTC

RC Column Crack Width Check as per EC2:04 & NTC2018

✓ Information

- 1) The stress check with cracked section is obtained along each axis in the program. Similarly, crack check is performed along local axis (y & z axis)
- 2) In GSD, you can also check actual stress in the cracked section on bi-axis along with stress in each reinforcement bar.
- 3) For calculating effective area of concrete in tension for circular cross sections (Ac,eff), the program use the equation by Wiese et al (left side)

- For determining ε_{sm} - ε_{cm}

1) $\boldsymbol{\epsilon}_{sm}$: The mean strain in the reinforcement under the relevant combination of loads, including the effect of imposed deformations and taking into account the effects of tensile stiffening.

2) $\epsilon_{\sf cm}$: The mean strain in the concrete between cracks.

3) σ_{s} :The stress in the tension reinforcement

4) α_e : Es / Ecm.

5) K_t : factor dependent on duration of the load.

0.6 for short-term load, 0.4 for long-term load 6) $\rho_{p,eff}$: As / Ac,eff

- For determining S_{r.max}

1) ϕ :bar diameter. The program uses the ϕ of the outer layer.

2) c : cover to the longitudinal reinforcement.

3)k1 : A coefficient accounting the bond properties of rebar (0.8 for high bond bars)

4)k2 : Coefficient accounting for distribution of strain. (0.5 for bending)

5)k3 : 3.4 (recommended values)

6) k4 : 0.425(recommended values)

4. SCWB Design/Checking Method Option as per ACI Series

Added nominal strength method for design force calculation, special provision for seismic design

Design > RC Design> Design Code > SCWB Design/Checking Method

SCWB Des	ign/Checking Option	1) The applied codes are ACI318-19,14(including M), NSR-10, NSCP2015
SCWB Design/Checking N O Design Strength	Nominal Strength	 2) This option can be activated when ① ACI 318-19,14, NSCP-2015: Special Moment Frames in Seismic Design Parameter
		(2) NSR-10 : DES(Special Energy Dissipation) or DMO (Moderate Energy Dissipation) Class in Seismic Design Parameter

1. Column design moment as per selection Performing Ductile Design & Checking

[Design Strength Method] Using the Design strength of beams, $\phi_b M_n$

$$\begin{split} \boldsymbol{M}_{c,B} = & \left(\frac{6}{5}\right) \left(\boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,L} + \boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,R} \right) \left(\frac{\boldsymbol{M}_{ce,B}}{\boldsymbol{M}_{ce,T} + \boldsymbol{M}_{ce,B}} \right) \\ \boldsymbol{M}_{c,T} = & \left(\frac{6}{5}\right) \left(\boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,L} + \boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,R} \right) \left(\frac{\boldsymbol{M}_{ce,T}}{\boldsymbol{M}_{ce,T} + \boldsymbol{M}_{ce,B}} \right) \end{split}$$

[Nominal Strength Method] Using the nominal strength of beams, M_n

$$\begin{split} M_{c,B} = & \left(\frac{6}{5}\right) \left(M_{nb,L} + M_{nb,R}\right) \left(\frac{M_{ce,B}}{M_{ce,T} + M_{ce,B}}\right) \\ M_{c,T} = & \left(\frac{6}{5}\right) \left(M_{nb,L} + M_{nb,R}\right) \left(\frac{M_{ce,T}}{M_{ce,T} + M_{ce,B}}\right) \end{split}$$

2. SCWB Ratio Calculation as per selection Performing SCWB Design & Checking

[Design Strength Method] Using the Design strength of beams and Column, $\phi_b M_{nb}$, $\phi_c M_{nc}$

$$Ratio = \left(\frac{\phi_c M_{nc,T} + \phi_c M_{nc,B}}{\phi_b M_{nb,L} + \phi_b M_{nb,R}}\right)$$

[Nominal Strength Method] Using the nominal strength of beams & Column , M_{nb} , M_{nc}

$$Ratio = \left(\frac{M_{nc,T} + M_{nc,B}}{M_{nb,L} + M_{nb,R}}\right)$$

MIDAS

5. Thailand Code : DPT (Wind and Seismic load)

Added DPT.1311-50:2007(Wind Load)

Wind Load	Wind	load Cal	c. She	et pei	r DPT13	311-05(20	007)	🎋 a-b A 🕂	4
Add/Modify Wind Load Specification × Load Case Name : WX · · · · · · · · · · · · · · · · · ·	00002 00003 00004 00005 00005 00006 00007 00008 00007 00008 00010 00010 00011 00012 00014 00015 00016 00017 00018 00017 00021 00021 00023 00021	BASIC INPL BASIC INPL Design Coc Calculati U Wind Zone Average R Basic Wing Exposure C Importance Fundamente Damping R C (Ming C (Ming) C	JASED ON JT DATA Je on Method of Heigh Steed, ' Sategory e Factor, il Natura il Natura il Natura di Speed, ' Sategory e Factor, il Natura di Speed, ' Sategory e Factor, sategory e Factor, sategory	250 1w I Frequer 0ADS re IND LOADS	-5012007 (ncy (Hz) S	DPT.1: DPT.1: Detai 1 50000 25.00 8 1.00 Major 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	A A A A A A A A A A A A C C C C C C C C C C C C C	, mm] , = 0.00 ho. = 0.0000 F)^2	
Hill Shape 2D Ridge or Valley Building Location Upwind Hill Height 0 mr Hill Length 0 mr Crest-Building Distance 0 mr Gust Factors and Pressure Coefficient Auto Calculate by Structure Information Major 2.5 Additional Parameters	00030 Wind 00037 00038 00039 00040 00041 00042 00043 00044 00045 00045 00046 00047	V-direct id Ioad pr Wind Direc Along Componen X-Dir Y-Dir X & Y-L SRSS	onal Wind ofile p tion A It	Loads er DP cross	• Torsion Select Profile • Story Forc • Story She • Overturnin	: SFy = 05(2007) al :e ar g Moment	0.00 Lof the Boof 127 117 107 97		×
Access Wind Torsional Wind Wind Response (Disp. / Accel,) Parameters of Wind Vibration Wind Load Direction Factor (Scale Factor) X-Dir, I Y-Dir, O Z-Rot, O Additional Wind Loads (Unit'N.mm) Story Along Add-X Add-X Vind Load Profile OK. Cancel Apply	000498 00020 00020 00052 00052 00052 00053 00054 00054 00054 00054 00054 00054 00054 00054 00054 00054 00054 0005000000	Story Name Roof 112F 11F 9F 8F 5F 6F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F	Elev. 50000.0 46000.0 38000.0 34000.0 30000.0 22000.0 18000.0 18000.0	Loaded H 2000.0 4000.0 4000.0 4000.0 4000.0 4000.0 4000.0 2022_公比 ad Calc. S	Loaded B 29100.0 2910.0 20	Wind Forc 37339.851 72217.981 69080.688 65558.459 62539.64 59109.375 59109.375 59109.375 59109.375 \$9109.375	87 77 87 87 87 87 87 87 87 87 87 87 87 8	2000 5000 Vind Tesce	70000 Close

5. Thailand Code : DPT (Wind and Seismic load)

Added DPT.1301/1302-61:2018 (Seismic Load)

Sta	tic seismic Load	
Add/Modify Seismic	Load Specification	×
Load Case Name Seismic Load Cod	: EX e : DPT,1301/1302-61:2 ~	
Description :		
Esismic Loa Region Bangkok Method	d Parameters — O Regeion except Bangkok	
O By Graph 1,4	1,6~7 💿 By Table 1,4-4~5	
Seismic Zone Seismic Zone	2 ~	
Design Spectral	Acceleration	
Site Class	Sd 🛛 🗸 🗹 by Code	
Ss 0,75 S1 0,30 Period Coef, (0	Fa 1.2 Sds 0.6 g Fv 1.8 Sd1 0.36 g Cu) 1.5	— 1 1
Category Risk Category Importance	Ⅱ ~ 1.00 ~	
-Seismic Design	Catagory	
Sds D	Define Factors per DP	T1301/1302-61(2018)
	Period Calculator	×
O Analytical Pe	Maior Direction	- Ortho Direction
Approximate	I, T = 0.02 H (for RC)	I, T = 0.02 H (for RC)
Fundamental Pe	○ 2, T = 0,03 H (for Steel)	○ 2, T = 0,03 H (for Steel)
Response Mod.	⊖ 3, T = N ★ H (User Input)	○ 3, T = N ★ H (User Input)
Damping Ratio	50	50
Seismic Load D	H 0,025	N 0,025
X-Direction : 1	Calculate	Calculate
Accidental Ecce		
X-Direction (Ex	Period 1 sec	Period1 sec
Y-Direction (Ey		OK Cancel
- Torsional Amplin	cauon	

6. Addition of Thailand DB(TIS for SI,MKS)

Added Concrete/Rebar DB and material as per TIS (for SI,MKS Unit system)

Set Rebar Material				(Concrete strength as per TIS
Preferences	×			[Material Data X
 Environment General View Data Tolerances Property Load Results Design/Code National Annex: Recommended Steel Design/Code: ACI3IBM-14 ✓ National Annex: Recommended Cold Formats - Dim, & Others Formats - Forces Formats - Loads SR24 SR24	SRC Design Code: AlK-SRC2K Rebar Material Code TIS(RC) Material DB SR24 Rebar Inforr	Rebar DB as per	TIS & Design reba	ar setting	General Material ID 7 Name C150 Elasticity Data Type of Design Concrete X ype of Material Product Concrete Standard DB Product Concrete Standard Concrete Standard DB Product Concrete
Super Changes Upon OK Default All Set Default	OK Cance CHK	(Name Dia (mm)	Area Dia(Out (mm²) (mm)	t) Weight (tonf/mm)	Teel of Elasticity : 0.0000e+00 N/mm ² C210 C210 C210 C210 C210 C210 C210 C210
Rebar strength as per TIS		DB0 0.0000 DB8 8.0000 DB10 10.0000 DB12 12.0000 DB16 16.0000 DB20 20.0000 DB22 22.0000 DB25 25.0000	22.2000 8.0000 39.5000 8.0000 61.6000 10.0000 88.8000 12.0000 157.8000 16.0000 246.6000 20.0000 298.4000 22.0000 385.3000 25.0000	0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	bisson s hatto .
Tensile Strength Yield Strength Yield St	rength	DB28 28.0000	483.4000 28.0000	0 0.0000	hermal Coefficient : 1,0000e-05 1/[C]
Fu (MPa) Fy (MPa) Fy (K	(SC)	DB32 32.0000 DB36 36.0000	799.0000 36.0000	0 0.0000	leight Density : 2,354e-05 N/mm*
SR 24 385 235 240		DB40 40.0000	986.5000 40.0000	0 0.0000	I USE Mass Density.
SD 30 480 295 300		RB6 6.0000	22.2000 6.0000 39.5000 8.0000	0 0.0000	asticity Data
SD 40 560 390 400		RB9 9.0000	49.9000 9.0000	0.0000	astic Material Name NONE ~
SD 50 620 490 500		RB10 10.0000	61.6000 10.0000	0 0.0000	Alastic Material Properties for Fiber Model Discrete None Rebar None
			0	OK Close	ermal Transfer Specific Heat : 0 kcal/N·[C] Heat Conduction : 0 kcal/mm·hr·[C] Damping Ratio : 0.05 OK Cancel Apply

7. Addition of Taiwan DB(CNS560-18)

Added New Concrete/Rebar DB and Material as per CNS560-18

eferences			
Environment General View Data Tolerances Property Load Results Design/Load Code Notice & Help Graphics Output Formats Formats - Dim. & Others Formats - Formats - Loads	Design Code Load Code Steel Design Code: TWN-ASD96 ~ National Annex: Recommended ~ Cold Formed Steel Design Code: AISI-CFSD08 ~ National Annex: Recommended ~	Concrete Design Code: TWN-USD111 ~ National Annex: Italy ~ Rebar Material Code CNS560-18(RC) ~ Material DB SD420W ~ SD280 SD280W SD420W	SRC Design Code: TWN-SRC100 ~ Rebar Material Code CNS560-18(RC) ~ Material DB SD280W ~

Rebar strength as per CNS560-18

	Yield Strength
	Fy (kgf/cm ²)
SD280	2,800
SD280W	2,800
SD420	4,200
SD420W	4,200
SD490W	5,000
SD550W	5,600
SD690	7,000

aterial Data											
General Material ID 1		Name	Girder								
Elasticity Data Type of Design Concre	te v	Steel Standard		~							
		Product		~							
		Concrete Standard	CNS560-18(RC)	~							
	rthotropic	DB	Code	~							
Steel			C210								
Modulus of Elasticity :	0.0000e+00	kgf/cm²	C280								
Poisson's Ratio :	0		C315 C350								
Thermal Coefficient :	0.0000e+00	1/[C]	C420								
Weight Density :	0	kgf/cm³	C700								
Use Mass Density:	0	kgf/cm³/g									
Modulus of Elasticity :	1.7583e+05	kgf/cm²									
Poisson's Ratio :	0.167										
Thermal Coefficient :	1.0000e-05	1/[C]									
Weight Density :	0.0024	kgf/cm³									
Use Mass Density:	2,447e-06	kaflem3/a									

8. Addition of Indonesia DB(SNI)

Added Concrete/Rebar DB and material as per SNI

	Set Rebar Materi	al									Concrete s	trength as pe	r SNI	
Preferences				\times						Material Dat	a			×
	Design Code Load Co Steel Design Code: AISC(15th)-LRFT \ National Annex: Recommended Cold Formed Steel Design Code: AIK-CFSD98 \ National Annex:	de Concrete Design Code: ACI318M-14 ✓ National Annex: Recommended Material Code SNI(RC) ✓ Material DB BITP 280 ✓	C -ign Code: (-SRC2K ebar aterial Code NI(RC) aterial DB jTP 280	Rebar I	Rebar	DB as per :	SNI & Desi	ign rebar	setting	General Material Elasticity Type of [D 7 Data lesign Concrete	Name Steel Standard DB Product Concrete Standard	fc17	
	Recommended ~	BiTP 280 BiTS 280		Reba	ar Code 🛛 S	NI				ype of Isotr	Material opic Orthotropic		Code	~
☑ Save Changes Upon OK	Default All	BITS 4208 BITS 520 BITS 550 BITS 550 BITS 700	Canc		CHK Nam	ie Dia (mm)	Area (mm²)	Dia(Out) (mm)	Weight (N/mm)	↑ teel odulus	of Elasticity : 0,0000	De+00 N/mm²	fc17 fc21 fc25 fc30	
R	ebar strength as p	er SNI			D8 D10 D11 D12	8.0000 8.0000 10.0000 3 13.0000 3 16.0000 9 19.0000 2 22.0000	28.2740 50.2660 78.5400 132.7330 201.0620 283.5290 380.1340	8.0000 8.0000 10.0000 13.0000 16.0000 19.0000 22.0000	0.0022 0.0039 0.0061 0.0102 0.0155 0.0218 0.0293	nsson nermal eight D Use N] Con odulus	Coefficient : 0,0000 ensity : lass Density: crete of Elasticity : 1,9376	0 1/[C] 0 N/mm ⁹ 0 N/mm ⁹ /g	10:30 fc40 fc45 fc50 fc55 fc60	
					✓ D25	5 25.0000	490.8750	25.0000	0.0378	pisson	s Ratio :	0,2		
Grade	Tensile Strength Fu (MPa)	Yield Strength Fy (MPa)			D29 D32 D32	29.0000 2 32.0000 3 36.0000	804.2500 1017.8780	29.0000 32.0000 36.0000	0.0508 0.0619 0.0784	hermal eight D	Coefficient : 1,0000 ensity : 2,354 tass Density: 2,4	le-05 1/[C] le-05 N/mm*		
BjTP 280	350	280		H-	D40	40.0000	1256.6400	40.0000	0.0967	10001		Winnyg		
BjTS 280	350	280		H	D54	\$0.0000 \$ 54.0000	2290.2260	54.0000	0.1511	sticity	Data			
BjTS 420A	525	420			D5	7 57.0000	2551.7650	57.0000	0.1964	astic M	aterial Name NONE	~		
BjTS 420B	525	420								V lastic l	Material Properties for F	iber Model		
BjTS 520	650	520		·				OK	Close	increte	INONE		e	~
BjTS 550	687.5	550								ermai Specifie I	liranster	keel/NLIC1		
BjTS 700	805	700								Heat Con	duction : 0	kcal/mm·hr·[(C]	
										Damping I	Ratio : 0.05		ancel	Apply

9. Earthquake Scaling Calculator

-Function : Scaling so that the average of the SRSS spectrum of the input seismic wave is greater than or equal to the target spectrum for the target period

9. Earthquake Scaling Calculator

-Tools > Generator > Earthquake Scaling

9. Earthquake Scaling Calculator

-Tools > Generator > Earthquake Scaling

10. Preview function of Start Page

-Personalized welcome message -A section to see most recently used models -Link to our technical knowledge site

11. Revit 2022 Interface

Gen-Revit Link

- File > Import > midas Gen MGT File
- File > Export > midas Gen MGT File

	Functions	Revit <> Gen
	Structural Column	<>
	Beam	<>
Linear	Brace	<>
Elements	Curved Beam	>
	Beam System	>
	Truss	>
	Foundation Slab	<>
	Structural Floor	<>
Planar	Structural Wall	<>
Elements	Wall Opening & Window	>
	Door	>
	Vertical or Shaft Opening	>
Boundary	Offset	>
	Rigid Link	>
	Cross-Section Rotation	>
	End Release	>
	Isolated Foundation Support	>
	Point Boundary Condition	>
	Line Boundary Condition	>
	Wall Foundation	>
	Area Boundary Condition	>
Load	Load Nature	>
	Load Case	>
	Load Combination	>
	Hosted Point Load	>
	Hosted Line Load	>
	Hosted Area Load	>
Other	Material	<>
Parameters	Level	>