
Release Note

Release Date : Sep. 2021

Product Ver. : midas Gen 2021 (v3.1) and Design+2021(v3.1)

DESIGN OF General Structures

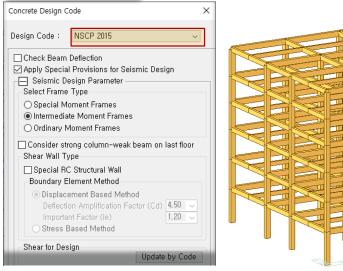
Integrated Design System for Building and General Structures

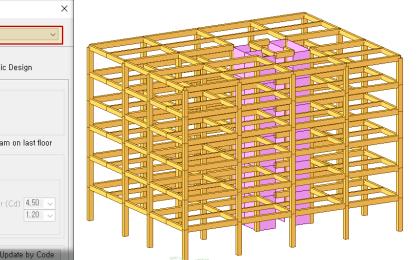
Enhancements

• midas Gen

1) Addition of Philippines RC Code(NSCP2015)	4
2) Addition of Philippines Load Combinations	5
3) Addition of Philippines Rebar DB(PNS 49)	7
4) Improvement of Start Page	8

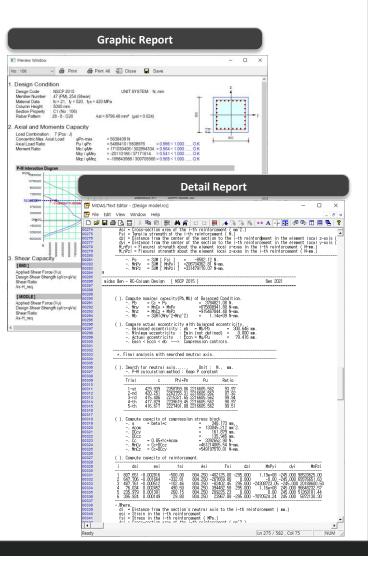
• midas Design+


1)	Add Composite Beam Design as per Eurocode	10
2)	Design report generation by user defined unit	13



1. Addition of Philippines RC Code(NSCP2015)

Add Philippines Code (NSCP 2015) of RC Design


Concrete Design Code

Design Result Table

N	SCP 20	15 RC	-Colur	nn De	sign Resu	lt Dialog									_		×
	Code : N Sorted b	,	2015 Memb Prope		U	nit : N	, r	mm	Primary O SEC	y Sorting CT ⊚N	Option /IEMB						
Ir	MEMB	SEL	Sec	tion	fc	fy	LCB	Pu	Mc	Ant	VDahar		Vu.end	Rat-V.end	As-H.end	H-Rebar.end	^
	SECT	SEL	Bc	Hc	Height	fys	LCB	Rat-P	Rat-M	Ast	V-Rebar	LCB	Vu.mid	Rat-V.mid	As-H.mid	H-Rebar.mid	
Ľ	41		C	4	30.0000	500.000	7	2209716	1.8E+08	4398.2	14-5-D20	12	347846	0.735	612.50	2-D10 @160	1
	406		600.0	700.0	5000.0	400.000	1 1	0.997	0.268	4390.2	14-5-020	12	347846	0.832	612.50	2-D10 @250	1
	42	_	С	3	30.0000	500.000	3	3364048	1.9E+08	4398.2	14-4-D20	12	382372	0.761	612.50	2-D10 @160	1
L	306		600.0	700.0	5000.0	400.000	~	0.999	0.278	4330.2	14-4-020	12	382372	0.854	612.50	2-D10 @250	
	43	П	С	3	30.0000	500.000	-	3363816	1.9E+08	4398.2	14-4-D20	12	383456	0.762	612.50	2-D10 @160	1
	306		600.0	700.0	5000.0	400.000	1 1	0.999	0.278	4390.2	14-4-020	12	383456	0.856	612.50	2-D10 @250	1
	44	_	C	4	30.0000	500.000	3	2204971	1.8E+08	4398.2	14-5-D20	12	347269	0.734	612.50	2-D10 @160	1
	406		600.0	700.0	5000.0	400.000	3	0.996	0.269	4398.2	14-5-D20	12	347269	0.831	612.50	2-D10 @250	
			-	~		500.000		0045047	0.05.00			10	000044	0.000	505.00	0.040.0400	

2. Addition of Philippines Load Combinations

Add Philippines Load combinations as per NSCP2015

For Concrete Design
utomatic Generation of Load Combinations
Option Add O Replace Code Selection
Steel Cold Formed Steel Aluminum
Design Code : NSCP 2015 ~
Scale Up of Response Spectrum Load Case Scale Up Factor : I Factor Load Case 1,000 RX 1,000 RY Delete
Consider Lateral Soil Pressure Factor Load Factor : 1.6
Manipulation of Construction Stage Load Case ST : Static Load Case CS : Construction Stage Load Case ST Only CS Only ST+CS
Consider Orthogonal Effect
Set Load Cases for Orthogonal Effect, 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squares)
Generate Additional Load Combinations ☑ for Special Seismic Load ☑ for Vertical Seismic Forces
Factors for Seismic Design
Will Execute Construction Stage Analysis Consider Losses for Prestress Load Cases Transfer Stage 1 Service Load Stage : 1
Consider Redundancy Factor r:
Load Factor : 1
Load Factor : 1 Consider Live Load Reduction Factor f1: Factor for Live load Reduction,

For Steel Design
Automatic Generation of Load Combinations X
Option Add Replace Code Selection Steel Concrete SRC Cold Formed Steel Footing Aluminum
Design Code: NSCP 2015 🗸
Scale Up of Response Spectrum Load Case Scale Up Factor : 1 RX Factor Load Case 1,000 RX 1,000 RY Delete
Consider Lateral Soil Pressure Factor Load Factor : 0,9 Manipulation of Construction Stage Load Case ST : Static Load Case CS : Construction Stage Load Case © ST Only CS Only ST+CS
Consider Orthogonal Effect
Set Load Cases for Orthogonal Effect, 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squares)
Generate Additional Load Combinations ☑ for Special Seismic Load ☑ for Vertical Seismic Forces Factors for Seismic Design,
Consider Redundancy Factor r: Load Factor : 1.0
Consider Live Load Reduction Factor f1: Factor for Live load Reduction
0K Cancel

For Footing Design
Automatic Generation of Load Combinations X
Option ● Add ○ Replace
Code Selection Osteel Oconcrete SRC Cold Formed Steel • Footing Aluminum
Design Code : NSCP 2015 🗸
Scale Up of Response Spectrum Load Case Scale Up Factor : 1 Factor Load Case 1,000 RX 1,000 RY Delete
Consider Lateral Soil Pressure Factor Load Factor : 1.6 Manipulation of Construction Stage Load Case ST : Static Load Case CS : Construction Stage Load Case
ST Only CS Only ST+CS
Consider Orthogonal Effect Set Load Cases for Orthogonal Effect
 100 : 30 Rule SRSS(Square-Root-of-Sum-of-Squares)
Generate Additional Load Combinations for Special Seismic Load for Vertical Seismic Forces
Factors for Seismic Design Consider Redundancy Factor r: Load Factor : 1
Consider Live Load Reduction Factor f1: Factor for Live load Reduction
OK Cancel

2. Addition of Philippines Load Combinations

Add Philippines Load combinations as per NSCP2015

Prevision	Load factors and combinations	Remark
	1.4 (D+F)	D : Dead Load
	1.2(D+F+T) +1.6(L+H) + 0.5(Lr or R)	• F : Fluid Load
Strength	1.2D +1.6(Lr or R) + (<i>f</i> 1L or 0.5W)	 T : Temperature Load H : Lateral pressure load of soil and water in soil
Load Combinations	1.2D ± 1.0W + <i>f</i> 1L +0.5(Lr or R)	L : Live load
as per 203.3.1	1.2D ± 1.0E + <i>f</i> 1L	 Lr : Roof live load R : Rain load
	0.9D ± 1.0W + 1.6H	W : Wind load
	0.9D ± 1.0E + 1.6H	 E : Earthquake load (=ρEh + Ev)
	D+F	 Em : maximum effect of horizontal and vertical earth-quake force (=Ω₀Eh)
Allowable stress	D+H+F+L+T	
Load Combinations as per 203.4.1	D + H + F + (Lr or R)	- Alternate load combinations as per 203.4.2 is auto-generated
	D + H + F + 0.75[L+T(Lr or R)]	in footing design for serviceability verification.
	D + H + F ± (0.6W or E / 1.4)	f1 : Live load reduction factor
	D + H + F + 0.75[L + Lr(0.6W or E/1.4)]	-1.0 : for floors in places of public assembly, for live loads in excess of 4.8kPa, and for garage live loads, or
	0.6D ± 0.6W + H	-0.5 : for other live loads
Alternate load combinations	0.6D ± E/1.4 + H	 ρ : Redundancy factor as per equation 208-20
as per 203.4.2	D + L + (Lr or R)	• Ω_0 : Seismic force amplification factor as set forth in Section.4.10.1
	D + L ± 0.6W	Eh : Horizontal earthquake load
	D + L ± E/1.4	• Ev : Vertical earthquake load (not provided in Gen2021 v3.1)
Special load combinations	1.2D + <i>f</i> 1L +1.0Em	
as per 203.5	0.9D ± 1.0Em	

3. Addition of Philippines Rebar DB(PNS 49)

Add Rebar DB and material as per PNS49

			×
 Environment General View Data Tolerances Property Load Results Design/Load Code Notice & Help Graphics Formats - Dim, & Others Formats - Forces Formats - Loads 	Design Code Load Cod Steel Design Code: TWN-ASD96 National Annex: Recommended Ocld Formed Steel Design Code: AISI-CFSD08 National Annex: Recommended	de Concrete Design Code: NSCP 2015 ~ National Annex: Italy Rebar Material Code PNS49(RC) ~ Material DB 230R 230R 230R 250R 550R	SRC Design Code: SSRC79 V Rebar Material Code KS01(RC) V Material DB SD400 V

Rebar strength as per PNS49

	Tensile Strength Fu (Mpa)	Yield Strength Fy (Mpa)
230R	390	230
280R	480	280
420R	620	420
520R	690	520
550R	725	550

Rebar DB as per PNS49 & Design rebar setting

R	Reb	ar Inforn	nation					×
	Re	bar Code	PNS ²	19				<
		снк	Name	Dia (mm)	Area (mm²)	Dia(Out) (mm)	Weight (N/mm)	^
			D10	10.0000	78.5400	10.0000	0.0061	1
			D12	12.0000	113.1000	12.0000	0.0087	1
			D16	16.0000	201.0600	16.0000	0.0155	1
			D20	20.0000	314.1600	20.0000	0.0242	1
			D25	25.0000	490.8800	25.0000	0.0351]
			D28	28.0000	615.7500	28.0000	0.0474	
			D32	32.0000	804.2500	32.0000	0.0619	
			D36	36.0000	1017.880	36.0000	0.0784]
			D40	40.0000	1256.640	40.0000	0.0967	
			D50	50.0000	1963.500	50.0000	0.1511]
								*
						ОК	Close	

4. Improvement of Start page

-You can see the latest news of midas program in banner. -Recently used projects can be opened by clicking on the list. 🔯 Start Page 🛛 🛛 □ Contact us 1 名 MIDAS Account Welcome to MIDAS Go to MIDAS Customer Online Support Go to midas Structure Go to Download Center(new Gen Installer&patch) \equiv Recent Sample steel model New Project + 2021-08-24 20:58:43 D:\00.2021년\해외 건축기술 성장리포트\컨텐츠 제작\Steel + desig.. Sample RC model-1 App7_EC3 design_final model 2021-08-20 17:43:09 2021-08-02 15:30:09 D:\00.2021년\해외 건축기술 성장리포트\컨텐츠 제작\Steel + desig.. D:\00.2021년\해외 건축기술 성장리포트\컨텐츠 제작\Steel + desig.. 7-DOF_BOX masonry pushover 2021-08-23 15:35:50 2021-05-24 08:20:50 C:\Users\hyw1005\Downloads\7-DOF BOX.mgb C:\Users\hyw1005\Downloads\masonry pushover.mgb GSD RC Column masonry pushover_cLBC2 2021-05-24 16:50:01 2021-07-16 17:20:34 C:\Users\hyw1005\Downloads\masonry pushover_cLBC2.mgb C:\Users\hyw1005\Downloads\GSD_RC Column.mgb

1. Composite beam design as per Eurocode

Support composite beam design as per Eurocode 4: 04

Mode/Link RC Steel SRC Aluminum	n Reinforce Load Option Tool	View Help			
Select SRC>Co	omposite Beam				
VorkBar 🗢 🗜	Start Page Member Member List	Drawing Quantity 🗸 🗸	K Report		
Add new member	General	Double click to Zoom	100% V Print Save Report	Option Summary Report	Include Input Data
System SRC ~	Member Name CB01	bouble click to zoom			
Type Composite Beam ~	Apply this Member to Dwg & Report 🗸	1 110@200	Steel beam at construction stage (Mma	к, <u>5.000</u> m)	
Name	Section Slab Deck Load	^{1-M19@300}	1. Calculation Summary		
Option Add	Material		(1) Moment Resistance		
Keep Sect. & Bar Data			Category	Value Criteria	Ratio Note
2 Define Design Code 8	v module	┃ ┝─── ── ────┤≁┃	Major Axis (kN·m)	10.98 360	0.0305
SRC Design receiver			(2) Shear Resistance		
😑 🕞 Option	Rebar 58.015 V MPa	8 500 8	Category	Value Criteria	Ratio Note
Design Code : Eurocode4:04	Rebai	8.600 4	Major Axis (kN)	0.000 678	0.000
Rebar DB : UNI	Section		(3) Combined Ratio		
	Shape H Section ~		Category	Value Criteria	Ratio Note
🔀 Design Code : Eurocode4:04	Use DB IPE400 V	180	Bending and Shear Resistance, Major		
- Big Design Option	H 400.00 mm		(4) Buckling Resistance		
Drawing Option Report Option	B 180.00 mm		Category	Value Criteria	Ratio Note
Preference	tw 8.60 mm tf 13.50 mm	Double click to Zoom	Lateral Torsional Buckling Resistance (kN·m)	10.98 360	0.0305
E Transite Beam (1)	tf 13.50 mm r 21.00 mm				
CB01	r 21.00 mm V		2. Classification		
	Span & Support	-2218.65	Flange	Web	Section
🛨 Composite Beam	Use Support	↓ <u></u>	Class 1	Class 1	Class 1
	Span 10.00 m	668.25			
	Spacing 3.00 m	4	3. Moment Resistance		
	Unbraced Length 1.00 m	Ň.	[BS EN 1993-1-1:2005, 6.2.5] [Calculation Summary (Moment Resistance)]		
		4 882.145			
			Major Axis	0.03	0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50
		668.25	Check Items	Major Axis (X)	Minor Axis (Y)
			Wpi	1,308,000mm ³	-
			MRd	360kN-m	-
		L	Med / MRd	0.0305	-
			4. Shear Resistance		
	Design(F4) Check(F5) Report	Apply(F3)	[BS EN 1993-1-1:2005, 6.2.6, 6.2.10]		
			[Calculation Summary (Shear Resistance)]		
			Major Axis	0.00	
			Check Roma	0.00 0.10 0.20 0.30 0.40 0.50 0.60	0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

1. Composite beam design as per Eurocode

Procedure of Composite Beam Design

	Fe430		
H-Beam			~
Shear Connector		_	~
Concrete	24 🔻	MPa	
Rebar	413.7	/ MPa	
Section Shape	H Section		~
bhope			
Use DB	IPE400		\sim
Use DB	IPE400 400.00	mm	~
		mm mm	~ ^
Н	400.00	mm	~ ^
H B	400.00	mm	~

3.00

1.00

	ab Deck	Lo	ad	1
Slab Thickness	150	.00		mm
T-Shap	e	0	Hal	fT-Shape
Rebar Conside	er Rebar			
Cover	20.00		mm	
Тор	P10	\sim	@	450 ~
Bottom	P10	\sim	@	450 ~
Shear Con				
Туре	M1	9		~
Columns	1			
Spacing	300	0.00		mm
		0.00	_	mm

ction S	ilab Deck Load	
eck Plate		
✓ Use De		Prop
Section	DPL-50.8x303x116x	182x1.2 ∨
Hr	50.80	mm
Sr	303.00	mm
Br0	116.00	mm
Br1	182.00	mm
t	1.20	mm

Define Deck information

Section Slab Dec	k Load
Live Load	5 kN/m²
Finishing Load	1.2 kN/m ²
Construction Load	1.5 kN/m²
Consider Self We	ight

Define Loads

Step 1.

Spacing

Unbraced Length

Define material properties & sections of H-beam/Shear connector /Concrete/rebar And input the beam's span/spacing/unbraced length.

m

Step 2. Define Slab information. (Thickness,rebar, shear connector type)

Step 3.

Define deck plate information and deck directions.

Step 4.

Define design loads. Input construction load for constructions stage, and Live load & finishing load for normal stage.

1. Composite beam design as per Eurocode

Summary & Detail design report in Composite beams

Summary design report

Steel beam at construction stage (Mmax, 4.000m)

1. Calculation Summary

(1) Moment Resistance

Category	Value	Criteria	Ratio
Mainr Axis (kN-m)	61.03	360	0.170

(2) Shear Resistance

Category	Value	Criteria	Ratio
ajor Axis (kN)	0.000	678	0.000

(3) Combined Ratio

Category	Value	Criteria	Ratio
Bending and Shear Resistance, Major	-	-	-

(4) Buckling Resistance

Category	Value	Criteria	Ratio
Lateral Torsional Buckling Resistance (kN·m)	61.03	360	0.170

Composite beam at normal stage (Mmax, 4.000m)

1. Calculation Summary

(1) Bending resistance

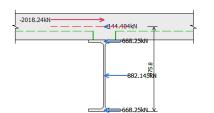
Category	Value	Criteria	Ratio
Bending resistance (kN·m)	230	698	0.330

(2) Check vertical shear resistance

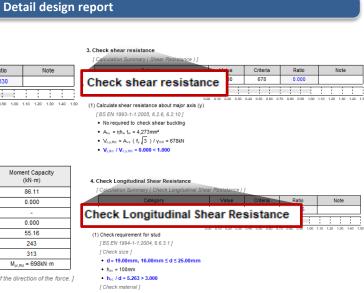
ſ	Category	Value	Criteria	Ratio
ľ	Vertical shear resistance (kN)	0.000	678	0.000

(3) Check Longitudinal Shear Resistance

Category	Value	Criteria	Ratio
Longitudinal shear resistance (kN/m)	457	871	0.525


· Coordinate of Plastic N.A. : in Concrete Slab

(2) Calculation for moment capacity of section

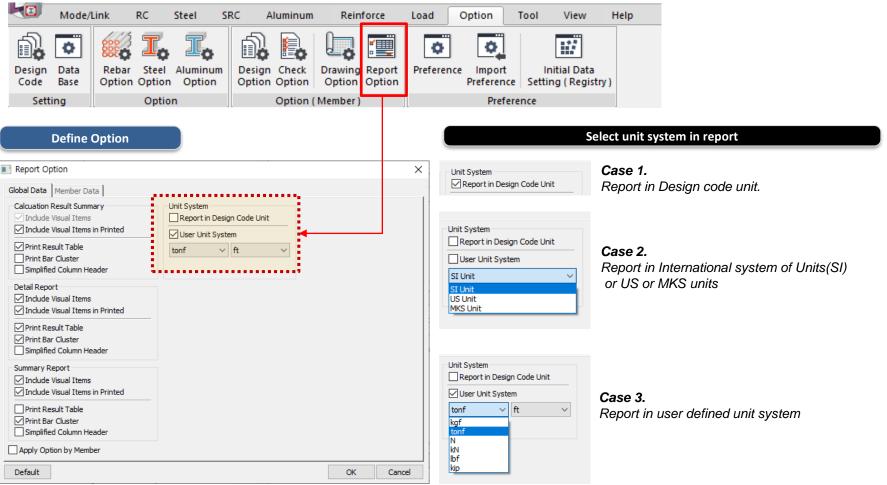

[BS EN 1994-1-1:2004, 6.2.1.2 (1)

Part	Axial Comp. Capacity (kN)	Arm Length (mm)	Moment Capacity (kN·m)
Concrete Slab	-2,018	42.67	86.11
Concrete Slab	0.000	20.27	0.000
Reinforcing Steel	-	-	-
Reinforcing Steel	144	0.000	0.000
Steel Top Flange	668	82.55	55.16
Steel Web	882	276	243
Steel Bottom Flange	668	469	313
Total			M _{pl,Rid} = 698kN ⋅ m

[The sign of moment capacity is determined by the direction of the moment regardless of the direction of the force.]

Condition	Equation for M _{Rd}	Value
x _{pl} ≤ 0.15h	βM _{pl.Rd}	698kN-m

f_u = 360MPa ≤ 500MPa


- (2) Calculate longitudinal shear force
 [BS EN 1994-1-1:2004, 6.6.3.1]
 n = E_n / E_{cm} = 6.734
- N_{c.el} = 243kN
- N_{c,f} = 4,080kN
- M_{pl,Rd} = 698kN ⋅ m
- M_{el,Rd} = 83.96kN·m
- + $V_{L,Ed} = (N_{c,f} N_{c,d}) \frac{M_{Ed} M_{d,Rd}}{M_{pl,Rd} M_{dl,Rd}} = 914 \text{kN}$
- V_{L,Ed} = V_{L,Ed} / L_v = 457kN/m
- (3) Calculate design shear resistance of headed stud [BS EN 1994-1-1:2004, 6.6.3.1]
- α = 1.000
- h_{sc} / d = 5.263
- $P_{Bd,1} = \frac{0.8 f_u \pi d^2 / 4}{= 65.33 kN/stud}$
- Υν Υν Υν
- $P_{Rd,2} = 0.29 \alpha d^2 \frac{(f_{ck} E_{cm})^{1/2}}{Y_V} = 72.46 kN/stud$
- P_{Rd} = min [$P_{Rd,1}$, $P_{Rd,2}$] = 65.33kN/stud
- v_{L,Rd} = P_{Rd} N S_c = 871kN/m

Serviceability check including vibration check is not provided in Design+2021 v3.1 (4) Check Longitudinal Shear Resistance • View / View = 0.525 < 1.000</p>

MIDAS

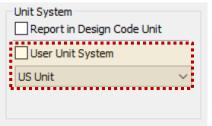
2. Design report generation by user defined unit

The unit system of Design report can be changed by user defined.

2. Design report generation by user defined unit

The unit system of Design report can be changed by user defined.

Case 1


1. General Information

Design Code	Unit System	F _{ck}	E,	Fue	
Eurocode2:04	N,mm	24.00N/mm ²	400N/mm ²	400N/mm ²	

2. Length & Factor

Section	K _x	Ky	L _x	Ly	Ye	γs	α _{cc}	Øof
500 x 500 mm	1.000	1.000	3.500m	3.500m	1.500	1.150	0.850	1.000

Case 2

1. General Information

Design Code	ign Code Unit System F _{ck}		F _y	F _{vs}	
Eurocode2:04	N,mm	3.481kip/in ²	58.02kip/in ²	58.02kip/in ²	

[User defined unit system is applied. (US Unit System : Ibf, in)]

2. Length & Factor

Section	K _x	Ky	L _x	Ly	Ye	γs	α _{cc}	Øof
19.69 x 19.69 in	1.000	1.000	11.48ft	11.48ft	1.500	1.150	0.850	1.000

Case 3

Unit System	n Design Code L	Jnit
User Uni	t System	
tonf	∽ ft	~
		•••••

1. General Information

Design Code	Unit System	Unit System F _{ck}		F _{vs}	
Eurocode2:04	N,mm	227ton f/ft ²	3,789tonf/ft ²	3,789tonf/ft ²	

[User defined unit system is applied. (Unit System : tonf, ft)]

2. Length & Factor

[Section	K _x	Ky	Lx	Ly	Ye	γs	α _{cc}	Øef
[1.640 x 1.640 ft	1.000	1.000	11.48ft	11.48ft	1.500	1.150	0.850	1.000

