Release Note

Release Date : June. 2021

Product Ver. : midas Gen 2021 (v2.1) and Design+2021(v2.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• midas Gen

1) Improvement of Section Stiffness Scale Factor	4
2) Improvement of Joint Design as per EC2:04 & NTC2018	11
3) User Definition of T1 for shear design as per EC8:04 & NTC2018	13
4) New method of Wall design moment calculation as per NTC2018	15
5) Addition of New Sweden National Annex in Eurocode	17

• midas Design+

1) User define of Deck Plate of composite beam module	20
---	----

Add element stiffness scale factor

- The stiffness can be adjusted by members.

Properties> Section> Scale Factor> Element Stiffness Scale Factor

Element Stiffness Scale Factor(E.S.S.F.) takes precedence over Section Stiffness Scale Factor(S.S.S.F.).

Supports the control of a section scale factor collectively for each member type

	View Sti	ructure N	ode/Element	Propertie	s Boundary	Load A	Analysis I	Results	Pushover	Design	Seismic Evaluation	Query Tools			
			🦟 Generate S	Section Effe	ective Stiffness		1 🔶 Read	ctions 👻 🤇	🚰 Stresses 👻	-	Rushover Curve	📸 Pushover Story gra	iph *	Pushover Hinge Properties	
		IEI	🖪 Set Load C	ase for S <mark>ec</mark>	tion Effective Stiffne	ess 2	🗍 Defo	ormations +	🛗 Hinge Sta	tus Result	E Pushover Graph	E Pushover Result of	Fiber Section	Pushover Hinge	
Global Control •	Load Case *	Hinge Properties *	🖉 Check Sec	tion Effec <mark>t</mark> i	ve Stiffness	Analysis	s 👻 🛃 Forc	ces 👻			E Pushover Smart Graph	h -		Pushover Hinge Result 👻	Pushover Text
Control	Load Case	Properties		Effective S	itiffness	Perform	m				Pushover Results			Pushover Tables	Text

Pushover > Effective Stiffness > Generate Section Effective Stiffness

Supports auto-calculation of the effective stiffness ratio of the column according to the column axial force by gravity load

View Struct	ure Node/Element F	Properties Boundary L	oad Anal	lysis Results	Pushover Design	Seismic Evaluation	Query Tools		
Global Control Case P Control Load Case I	Hinge roperties	tion Effective Stiffness e for Section Effective Stiffness n Effective Stiffness fective Stiffness	Perform Analysis * Perform	← Reactions ▼ ← Deformations F	₩ Stresses ד דוֹם Hinge Status Resu	Pushover Curve Pushover Graph Pushover Smart Grap Pushover Results	Pushover Story graph ▼ ↓ Pushover Result of Fiber Section h ▼	Pushover Hinge Properties	Pushove Text
	Set Load Case for S	Section Effective Stiffr	X	Ste	ep 1: Set the so the colun	cale factor gravi nn axial force	ty load in order to calcula	ate	
	Load Case/Fac Load Case : Scale Factor : Loadcase	btor DL V 0,5 Scale Ad	 d		6.4.1.2 Component accepted prin	Stiffness stiffnesses sha nciples of med	all be calculated accor chanics. Sources of fle	rding to exibility	
	DL LL	1 0,5 Dela	lify ete		shall include reinforcements components. the stress and components	a flexure, shea nt slip from ac Stiffnesses sl d deformation will be subject	r, axial load, and ljacent connections an hould be selected to re levels to which the cted, considering volu	nd epresent ume	
		OK Ca	ncel		with design	earthquake an	d gravity load effects		

Reference Code : 6.4.1.2 as per FEMA273

Step 2 : Select the calculation method.

Step 3 : In case of "by User Defined", input the axial force ration and bending stiffness scale factor for each point.

View Structure Node/Element Properties B	oundary Load Analysis	Results Pushover Desig	n Seismic Evalu	uation Query Tools		
Global Control - Case - Properties - Control Load Case for Section Effective Stiffer Control - Case - Properties - Control Load Case for Section Effective Stiffer Control Load Case - Properties - Control Load Case for Section Effective Stiffer	ffness ective Stiffness ess Perform Analysis ~ F	Reactions ▼	Pushover Cu ult Pushover Gi Pushover Sr Pushover Pas	urve 👬 Pushover Story grapi raph 🖉 Pushover Result of F mart Graph 👻	h • fiber Section	r Hinge Properties r Hinge r Hinge Result + Pust
Check Effective Stiffness of Column Calculation Method Calculated by : KISTEC2019 Calculated by User Defined	X Table 10-5. Effective Sti	ffne	User Defined Se	tting	2 nd	
Component	Flexural Rigidity	Shear Ri	Stiffnes (lef	1 st point	point	
Beams—nonprestressed ^a Beams—prestressed ^a Columns with compressio n caused by design	$0.3E_cI_g$ E_cI_g $0.7E_cI_g$	$0.4E_{d}$ $0.4E_{d}$ $0.4E_{d}$	0.0 Bending			
gravity loads $\ge 0.5A_g f'_c$ Columns with compression caused by design gravity loads $\le 0.1A_g f'_c$ of with tension	$0.3E_cI_g$	$0.4E_{c}$		0.0 Axial Ford	ce Ratio 1.0	
Beam–column joints Flat slabs—nonprestressed Flat slabs—prestressed	Refer to Section 10.4. Refer to Section 10.4. Refer to Section 10.4.	2.2.1 4.2 $0.4E_{e}$ 4.2 $0.4E$		Axial Force Ratio	Bending Stiffness	s Scale Factor
Walls-cracked ^b	$0.5E_cA_g$	0.42	1st Point	0,1	0.3	
^{<i>a</i>} For T-beams, I_g can be taken as twice the value of I_g of For columns with axial compression falling between the not performed, the more conservative effective stiffnesses because 10.7.2.2.	f the web alone. Otherwise, a te limits provided, flexural r es should be used.	I_s should be based on the efficient of the state of the second secon	2nd Point	U,5	U, 7	Cancel

Reference Code : ASCE41-17 Table 10-5

Step 4 : Check and update the effective stiffness factor of columns.

							-			1 2			
	View Str	ucture N	lode/Element Properties	Boundary	Load	Analysis	Results Pushover	Design	Seismic Evaluation	n Query	Tools		
			Generate Section Effectiv	ve Stiffness	6	+ Reactions *	Stresses 👻	🚬 Pust	nover Curve	Pushover S	itory graph 👻	Pushover Hinge Properties	
		9 - 9	Set Load Case for Check			H Deformation	🗤 🛪 👬 Hinge Status I	Result 🖉 Pusi	nover Graph	Pushover F	Result of Fiber Section	📲 Pushover Hinge	
Global Control *	Load Case ▼	Properties *	Check Section Effective S	itiffness "	Analysis -	🛃 Forces 🔹		🗲 Pust	nover Smart Graph 👻			Pushover Hinge Result 👻	Text
Control	Load Case	Properties	Effective Stiffness		Perform			Pusho	ver Results			Pushover Tables	Text

If you click 'Update' button, the flexural stiffness factor of the selected member is updated in the model.

The updated stiffness factor is reflected in the 'Element stiffness Scale Factor'.

Dpdated Element Stiffness Scale Factor	Scale Factor
🔢 🔀 95 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1]	
🔤 🚾 🔢 96 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,307439 ; Iz=0,307439 ;	Weight=1]
🔤 🔤 📅 97 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1]	
🔤 🔤 🔢 98 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1]	
🔤 🏧 🔢 🗧 Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,409479 ; Iz=0,409479 ;	Weight=1]
🔤 🔤 🔢 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤	Weight=1]
🔤 🔤 📶 😳 🚾 🚾 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤	1
🔤 🔤 🚾 🔢 102 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 399397 ; Iz=0, 399397	Weight=1]
🔚 🔤 📶 103 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 328443 ; Iz=0, 328443	Weight=1]
🔤 🔤 📶 104 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1	1
🚽 🔤 📶 🚾 📶 📶 🔚 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤	Weight=1]
🔚 🔤 🚾 🔀 106 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 310948 ; Iz=0, 310948	Weight=1]
	1
🔚 🔤 📶 🚾 🔀 108 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 398676 ; Iz=0, 398676	Weight=1]
🚽 🚾 📶 109 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 328037 ; Iz=0, 328037	Weight=1]
🔤 🔤 📶 110 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1	1
🗕 🚾 📶 111 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0, 373477 ; Iz=0, 373477	Weight=1]
🚽 🌃 📶 🖂 🔚 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤	Weight=1]
🔤 🚾 🔢 113 : [Group=Default ; Ax=1 ; Ay=1 ; Az=1 ; Ix=1 ; Iy=0,3 ; Iz=0,3 ; Weight=1	1
🔚 📅 114 · Γ. Group-Default · Δν-1 · Δυ-1 · Δτ-1 · Ιν-1 · Ιν-1	Weight-1 1

- Hinge rotations are calculated by the element stiffness scale factor.

2. Improvement of Joint Design as per EC2:04 & NTC2018

Add option to check joint position

- Available joint design on both ends of the columns

2. Improvement of Joint Design as per EC2:04 & NTC2018

Add option to check joint position

- Available joint design on both ends of the columns

3. User Definition of T1 for shear design as per EC8:04 & NTC2018

- Allow to define the fundamental period(T1) directly for slender wall shear design

	Concrete Design Code		Хг	· · ·
				EC8:04 Capacity Design X
	Design Code : Eurocode2	:04 ~		Structure Information
	National Annex : Italy	~		Structure Type : Coupled Wall System \sim
	Apply NTC NTC201	8 ~	╸╺┻╴╽	Behavior Factor (q)
	Apply Special Provisions	for Seismic Design		O Calculate by Program
	Strut Angle for Shear Resista	ince: 45 Deg		Alpha_u / Alpha_1 : 1.2
	Effective Creep Ratio (Phi_ef)): 2.14		User Input
	Slenderness Limit			q 2 qo 2
Applied equation : 5.25 (EC8:04)	Lombdo lim = 2E/oat(a)			Fundamental Period(T1)
$V_{\rm r,i} = \varepsilon \cdot V_{\rm r,i}$		(5.24)		Coloulate by Brogram Add as option
Ed - Ed		()		O Calculate to Pringram
where	г			
where				T1_X 0,1 T1_Y 0,1
V Ed is the shear force from the analysis;				Elactic Bachanca Spectrum
				Default Du Dupeting DC CLV = 2 ant D T1
				Default by Function BS_SLV_q=2_cat-B_TT V
ε is the magnification factor, calculated i	from expression (5.25)	, but not less than		Spectrum Parameters
1,5:				Soil Factor (S) Tb Tc Td
				1,2 0,131 0,3931 2,6
$\left(\gamma_{-1}, M_{-1}\right)^2 = \left(S\left(T_{-1}\right)\right)^2$				Bef. Beels Crowed Acc. (AcR) + 0.147
$\varepsilon = q \cdot \left \frac{7 \operatorname{Rd}}{10} \cdot \frac{7 \operatorname{Rd}}{10} \right + 0.1 \left \frac{3 \operatorname{e}^{(2C)}}{2} \right \le q$		(5.25)		Her, Heak Ground Acc, (Agh) : 0,141 g
$\begin{pmatrix} q & M_{Ed} \end{pmatrix}$ $\begin{pmatrix} S_e & I_1 \end{pmatrix}$				Importance Factor(I) :
T _i is the fundamental period of vibration	of the building in the	direction of chear		Viscous Damping Ratio (xi) : 5 %
forces Vra	or the outlding in the	ancenon or shear		
ISICCS VEQ,				
				Ort

3. User Definition of T1 for shear design as per EC8:04 & NTC2018

- Allow to define the fundamental period(T1) directly for slender wall shear design

4. New method of Wall design moment calculation as per NTC2018

- Method 2 is an alternative method in which the upper wall design moment is applied excessively to the code method (Method 1).

4. New method of Wall design moment calculation as per NTC2018

- Method 2 is an alternative method in which the upper wall design moment is applied excessively to the code method (Method 1).

5. Addition of New Sweden National Annex in Eurocode

Add Sweden National Annex (BFS2019:1) of Steel Design

Design Result Table

Eu	rococ	le3:05 C	ode Che	cking	Result Dialog													_		×
9	Code Sortec	: EC3:0 1 by 🔵	5, SWE2 Membe Property	019 r ⁄	Unit Change,.,	t : kN , Update	m	Prim:	ary Sortir ECT	ng Option MEMB										
	СН	MEMB	SECT	SE	Sectio	n		Len	Ly	Ку	Bmy	N,Ed	My,Ed	My,Ed	Mz,Ed	Vy,Ed	Vz,Ed	T,Ed	Def	^
	К	COM	SHR	L	Material	Fy	LOB	Lb	Lz	Kz	Bmz	N,Rd	Mb,Rd	My,Rd	Mz,Rd	Vy,Rd	Vz,Rd	T,Rd	Defa	
	or	254	221		SG1, W24	x76	2	12.0000	12.0000	1.000	1.000	0.00000	-458.65	-458.65	0.00000	0.00000	181.729	-	-0.0142	
	UK	0.707	0.165		A36	248211	-	4.00000	12.0000	1.000	1.000	3587.05	648.575	813.491	116.329	0.00000	1101.29	-	0.04800	
	OK	251	222		SG2, W18	x55	2	3.00000	3.00000	1.000	1.000	0.00000	-235.96	-235.96	0.00000	0.00000	141.276		-0.0016	
	UK	0.518	0.194		A36	248211	2	2.00000	3.00000	1.000	1.000	2594.20	0.00000	455.555	75.2479	0.00000	729.078	-	0.02400	
	or	125	223		SG3, W18	x55	6	6.00000	6.00000	1.000	1.000	0.00000	228.311	228.311	0.00000	0.00000	114.076	-	-0.0031	
	UK	0.501	0.156		A36	248211		2.00000	6.00000	1.000	1.000	2594.20	0.00000	455.555	75.2479	0.00000	729.078	-	0.02400	
		24	224	_	SG4, W30:	x116		10.8000	10.8000	1.000	1.000	0.00000	1274.54	1274.54	0.00000	0.00000	-562.25		-0.0465	

Graphic Report (Summary Report)

	Preview Window						-		×		
N	lemb No : 25	v 🖨 Print	🖨 Pri	nt All 📳 Close	🖬 Save						
1.	Design Inform	ation				8 ^Z			^		
	Design Code	Eurocode3:05 &	SWE2019		1	- 5+					
	Unit System	kN, m			켫						
	Member No Matorial	25 A36 (No:1)			0.762	b y					
	Material	(Ev = 248211 F	s = 19994	8024)	Ŭ	8.0.014351					
	Section Name	SG4 (No:224)	.5 10004	0024)	-						
		(Rolled : W30x1	16).			ę.266570					
	Member Length	: 10.8000				⊢ −1					
2.	Member Forc	es									
	Axial Force	$F_{XX} = 0.$	De	tail Repo	rt						
	Bending Moments	My = 12			0vb	0.21315	0zb	0.00586	-	_	
	End Moments	Myi = 124 Myi = 124	Ш. h4 M 1004 МІПЛ	vi. = 1184.15_lfc AS/Text Editor - [App	1 Steel acs1	0_0000E	Lan.	.0.00007.		- 0	×
		Mzi = 0.0	File	Edit View Winds	w Help						
	Shear Forces	Fyy = 0			Ba ne i 📼		- I III 🔺 🤇	1 2 1	i a-b	A	AR M
		Fzz = 58	00104	9 9			- Ia≕l Z♥ /	• /• /		** [543	
			00105	midas Gen - Steel	Code Checkir	g[Eurocode3:05, :	SWE2019]			Gen 2021	<u>-</u>
3.	Design Paran	neters	00107								
	Unbraced Lengths		00109	*. PROJECT	: 05	FUENENT TYPE - D					
	Effective Length Fa	ctors Moment Feature	00111	*. NEMBER NU *. LOADCOMB N	10 25, 2,	NATERIAL NO =	eani 1, SECTII	ON NO =	224		
	Equivalent Unitorni	WOMENLY actors	00113	*. UNIT STST	2M : KN, H 200507150 - 5		W00-110				
4.	Checking Res	sult	00115	*. SECTION P	= I - Sectio	n. (Rolled)	W3UX116	D-4 C III:		0.007	
	Slenderness Ratio		00118	Veb Thick	= 0.014	, Top F Thick =	0.022,	Bot.F Th	nick =	0.022	
	L/r	= 194.2 <	00120	Area = 2.3 Year = 1	20645e-002, 22296o-001	Avy = 1.17450e-0 7bar = 3.91127c-0	02, Avz = 1	.23833e-	-002	1⇒b = 8.9926	Ma-002
	Axial Resistance		00122	Vely = 5.	39134e-003,	Weiz = 5.12915e-0	D4, Wply = 0	5.19431e-	-003, 1	lpiz = 8.0624	14e-004
	N_Ed/Nt	_Hd = 0.00	00124	y = 3.1	14800e-001, 57637e-006	iz = 5.56260e-0 Cup = 9.34829e-0	12 16	,,000006.	000		
	M Edv/M	e Bdv = 1240 64	00128	+ DESIGN PAR	AMETERS FOR	STRENGTH EVALUATION	nn ·				
	M_Edz/M	_Rdz = 0.000	00128	Ly = 1.0 Ky = 1.0	38000e+001, 10000e+000	Lz = 1.08000e+0	01, Lb = : nn	2.7000De+	-000		
	Combined Resistar	109	00130	+ NATERIAL R	ROPERTIES	11000000-0					
	R.MNRd	= MAX[M_Edy/M	00132	Fy = 2.4	18211e+005,	Es = 1.99948e+0	DB, MATERIA	NAME -	A36		
			00134 00135	*. FORCES AN) NOMENTS AT	CID POINT :					
			00138	Axial For Shear For	be Fxx⊸ bes Fvv⇒	10.00000e+000 0.00000e+000. E:	zz = 5.50379	+1112			
			00138	Bending Mi End Moment	ments My = s Myi =	1.24064e+003, M 1.24064e+003, M	z = 0.00000 vi = 1.18415	≥+000 ≥+003 (f	or Lb)		
			00140 00141		Nyi = Nzi =	1.24064e+003, M 0.00000e+000, M	y) = 1.18415 zi = 0.00000	9+003 (f 9+000 (f	or Ly)		
			00142 00143	*. Sign conv	antions for s	tress and axial fo	orce.	,	,		
			00144 00145	- Stress - Axial fo	Compression prce: Tension	positive. positive.					
			00148 00147								
			00148 00149	[[[*]]] CLASS	FV LEFT-TOP	FLANGE OF SECTION	(BTR).				
			00150 00151								
			00152 00153	(). Ueternin [Euroci	ne classifica ode3:05 Table	tion of compressi 5,2 (Sheet 2_of_1	on outstand 1 3), EN 1993-1	langes. I-5]			
			00154	e b/t	= SURT(23	5/1y) = 0.97 5.84					
			00158	−. sigm −. sigm	200287.	209 KPa. 269 KPa.					
			00158	BIR -	⊂s+e (Ulas	s i : Plastic).					
			00160	midas Gen - Steel	Code Checkir	g[Eurocode3:05, :	SWE2019]			6en 2021	
			102 1								•
			Ready						Ln é	52 / 383 . Co	102

MIDAS

5. Addition of New Sweden National Annex in Eurocode

Graphic Report (Summary Report) × Concrete Design Code Preview Window No : 43 🖉 🖨 Print 🖉 Print All 🖅 Close 日 Save Design Code : Eurocode2:04 \sim Design Condition Eurocode2.04 & SWE2019 UNIT SYSTEM : N, mn Design Code Member Number Sweden(2019) National Annex : fck = 30, fyk = 500, fyw = 400 MPa Material Data Column Height Section Property Rebar Pattern C3 (No : 306) 16 - 5 - P25 Apply NTC Ast = 7853.92 mm^e (pst = 0.019) Axial and Moments Capacity Apply EC8:04 Capacity Design 8T -Load Combination 12 (Post J Concentric Max. Axial Load 45 Strut Angle for Shear Resistance : = 2149706 / 5381027 = 0.399 < 1.000 = 413357927 / 1044520338 = 0.396 < 1.000 = 170002257 / 418035769 = 0.407 < 1.000 Deg Axial Load Ratio N_Ed/N_Rd M Ed/M Rd Moment Ratio M Edv / M Rdv OK 2.14 Effective Creep Ratio (Phi_ef) : M Edz / M Rdz = 376781114/957219323 = 0.394 < 1.000 = 0.256/0.550 = 0.465 < 1.000 Normalized Axial Load Ratio Nu_d/0.58 = 0.256 / 0.550 Slenderness Limit M-N Interaction Diagram NINPASTEED Lambda_lim = 20*A*B*C/sqrt(n) **Detail Report** 1016040 1657680 884318 A: 0.7 Calculate by Program 5828708 \times MIDAS/Text Editor - [App5_EC2 Design-Final model.rcs] B: 11 4121481 File Edit View Window Help 2814219 1108877 🗋 🖆 🖶 🖀 🔃 🛤 💼 📕 🗰 🛱 의 오 🛛 📕 🔺 🧏 🦄 🦄 🗰 🗛 🕂 🐺 🖉 약 약 1907508 8414748 midas Gen - RC-Column Design [Eurocode2:04 & Eurocode8:04] Gen 2021 Shear Capacity (). Calculate design moment for slender/non-slender element about minor axis. [END] Minimum moment by eccentricity. Emin_z = 20.000 mm. M_Edz_min = N_Ed * Emin_z = 40968437.327 N-mm. Applied Shear Force (V_Ed) V_Ed /V_Rdc V_Ed /V_Rds V_Ed /V_Rdmax Shear Ratio Asw-H_req 00164 00165 00166 00167 Applied design moment. M_Edz_app = NAX[M_Edz, M_Edz_min] = 54339527.396 N-mm. ---> M_Edz_app is applied for design. (). Design forces/noments of column(brace). -. Avia force (Dompression) N.E.d = 2049421.67 N. -. Combined Bendra Mount M.E.d = 403039465.93 N-man. -. Bendrag Moment about Local - N.E.d = 463030562.19 N-man. -. Sime Moment about Local - N.E.d = 46307484.97 N-man. -. Sime force of Local - V.E.dy = 377950.15 N. -. Sime force of Local - V.E.dy = 405551.15 N. [MIDDLE] Applied Shear Force (V_Ed) V_Ed/V_Rdc V_Ed/V_Rds V_Ed/V_Rds V_Ed/V_Rdmax Shear Ratio Asw-H_req **Design Result Table** [[[*]]] ANALYZE CAPACITY OF BIAXIALLY LOADED RC_COLUMN(RC-BRACE). Design Moment about y-direction For Ductile Design. -. M.Edyl = 111445587.34 N-mm.(from Load Combination) -. M.Edy2 = 189300582.19 N-mm.(from Moment Resistance of Beams) -. M.Edy2 = Max[M.Edy1, M.Edy2] =189300632.19 N-mm. ()Eurocode2:04 RC-Column Design Result Dialog X Code : EC2:04,SWE2019 Unit: N , mm Primary Sorting Option (). Design Moment about z-direction For Ductile Design. __M_Edzl = 54339527.401 N-mm. (from Load Combination) __M_Edzl = 355617464.971 N-mm. (from Moment Resistance of Beams) __M_Edz = Max[M_Edzl, N_Eddz]. +355817484.971 N-mm. Sorted by OMember Property Concute design persaters and a concentration main and a concentration of the con LC V_Ed.end Rat-V.end Asw-H.e H-Rebar.end Ash.reg Rat-As MEMB SE Section fck fyk LC Uc N_Ed M_Ed Ast V-Rebar J-Rebar B V_Ed.mid SECT L Bc Hc в Rat-Uc Rat-N Rat-M H-Rebar.mid Ash.us h Height fyw Rat-V mid Asw-H m 2694578 1.1E+09 0 C1 30,0000 500,000 0.471 12 395581 0.978 4524.0 2-P12 @50 4731.50 11781 24-7-P25 0.972 Failure 106 4500.0 CCC00/ 600.0 600.0 400.000 0.983 0.974 3258.2 2-P10 @40 4869.4 0 C1A 30,0000 500,000 0.249 1496645 4.2E+07 431672 0.959 3098.8 2229.69 13 2-P12 @70 6872.2 14-5-P25 2-10 P12 13 0.986 156 500.0 600.0 5000.0 400.000 0.454 0.188 0.190 13 431672 0.986 3098.8 2-P10 @50 2262.00 0 C2 30.0000 500.000 0.333 763175 9.9E+08 389761 0.964 3231.4 2-P12 @70 3300.71 2-22 P12 10799 22-6-P25 0.955 (). Check the ratio of reinforcement. -. Rhomin = 0.010000 -. Rhot = 0.018700 Rhomin < Rhot ---> 0.K ! 206 600.0 600.0 4000.0 400.000 0.605 0.912 0.927 419465 0.939 2458.6 2-P10 @60 3455.70 C3 30.0000 500.000 0 0.261 41127 2-P12 @90 7853.9 16-5-P25 0.975 2-21 P12 306 600.0 700.0 4000.0 400.000 0.780 0.770 393064 0.880 2303.9 2-P10 @60 3298.68 midas Gen - RC-Column Design [Eurocode2:04 & Eurocode8:04] Gen 2021

Add Sweden National Annex (BFS2019:1) of RC Design

1. User define of Deck Plate of composite beam module

Deck plate section of composite beam can be customized.

			Use DB Section	
Secti	on	Deck	Load Vibration	ן ו
	ck Pla Use Use	ate Deck r Defi	Plate ned	Prop
Se	ction		DPL-75x200x58x80x	:1.6 ~
Γ	н	r	75.00	mm
	S	r	200.00	mm
	Br	0	58.00	mm
	Br	1	80.00	mm
	t		1.60	mm
Dir	ectio	n I	Perpendicular to Bea	m ~

Section Deck Load Vibration -1-M19@300 Deck Plate Use Deck Plate Prop. ... User Defined 6 DPL-75x100x58x80x1.6 Section 75.00 mm Hr 200.00 mm Sr 58.00 mm Br0 8 80.00 mm Br 1 20 1.60 mm t Perpendicular to Beam Direction \sim

User Defined Section

300

1. User define of Deck Plate of composite beam module

• Section properties can be directly input by the user for both DB section and user-defined section.

Deck Plate Deck Properties X User Defined Prop User Defined User Defined Section DPL-80x200x58x80x2 A 3355.44 mm² Hr 80.00 mm W 0.00 kN/m³ Sr 200.00 mm Centr 47.21 mm Br0 58.00 mm Ixx 2550127.58 mm²×²
Obser Defined User Defined Section DPL-80x200x58x80x2 Hr 80.00 mm Sr 200.00 mm Br0 58.00 mm Jack 2550127.58 mm ^{2x2}
Section DPL-80x200x58x80x2 Hr 80.00 Sr 200.00 Br0 58.00 Sr 200.00 Image: Bro state 100 King 100 Image: Bro state 100 State 100 Bro state 100
Hr 80.00 mm Sr 200.00 mm Br0 58.00 mm Image: Second seco
Sr 200.00 mm Br0 58.00 mm Image: State of the stat
Br0 58.00 mm IXX 2550127.58 mm ² x ²
100 00 00 00 00 00 00 00 00 00 00 00 00
Br1 80.00 mm
t 2.00 mm Z(+) 55190.14 mm ³
Z(-) 80208.37 mm ³
Ht 25.46 mm

(4) Deck PlateDirection		: DPL-80x200x58x80x2 : Perpendicular to Beam				
	Hr	Sr	Bro	Brt	t	Ht
	80.00mm	200mm	58.00mm	80.00mm	2.000mm	25.46mm
	А	W	Cy	kx	Z(+)	Z(-)
	3,355mm²	0.000kN/m ³	47.21mm	2,550,128mm*	55,190mm ³	80,208mm ³

- 1.DB section: The properties defined in the DB are applied.
- 2. User Defined section: Automatic calculation value applied. (Calculated as section property for Thin-Wall Section)

