Release Note

Release Date : December. 2020

Product Ver. : midas Gen 2021 (v1.1) and Design+2021(v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• midas Gen

1) Improvement of Non-dissipative design speed	4
2) Improvement of Non-dissipative element as per NTC2018	5
3) NTC2018 limits the shear force for design	7
4) Concrete design result of elastic strength load combination	9
5) Add option of pushover Hinge Model as per EC 8 :2004	10
6) Add irregularity reduction factors in table as per NSR-10	11
7) Improvement of wind pressure function	12
8) Add rebar material code DB (U.S Imperial rebar)	13
9) Improvement of concrete shear strength in SMF	14
10) Add element type of Beam End Offsets function	15
11) Add Static earth pressure function	16
12) Elastic link graphic result in pushover analysis	17
13) Debonded Length of Pretensioned Beam	18
14) Revit 2021 interface	19

• midas Design+

1) Support on excel report output	21
2) SRC column module adding steel shape(box/pipe)	23
3) Midas link option	25
4) Add Combined Footing Design as per Eurocode	28
5) Reporting speed for MS word format	31

midas **Gen**

1. Improvement of design speed for Non-dissipative elements

• Reduction of design time by optimizing m-phi calculation and improving the output algorithm

2. Improvement of Non-dissipative Design as per NTC2018

Non-dissipative in flexural & Shear design – Design Table

- Output of separated results for ULS except seismic action) and ELS with seismic modified by q for non-dissipative elements

Ultimate Strength Check (LC_A) in graphic design

* LC_A : Load combination to check ULS(Ultimate Limit State) except seismic loads

Code : E Sorted b	Code : Eurocode2:04,NTC2018 Unit : kN , m Sorted by Member Property Property Serviceability Elastic MEMB SE Section fck fyk CHK LC) /	Primary So OSECT	orting Optio MEME	in 3											
MEMB	SE	S	ection	fck	fyk	CHIK	LC	V Babar	N_Rdma	Uc	N_Ed	M_Edy	M_Edz	V_Rdc.end	V_Rds.end	V_Rdc.mid	V_Rds.mid	LC	V_Ed.end	Rat-V.end	Ash.req
SECT	ECT L BC Hc Height fyw	fyw		В	v-Rebai	x	Rat-Uc	Rat-N	Rat-My	Rat-Mz	Rat-Vc.end	Rat-Vs.end	Rat-Vc.mid	Rat-Vs.mid	в	V_Ed.mid	Rat-V.mid	Rat-J			
373		P	30x60	25000.0	450000	MV	10	14 5 D16	3611.27	0.000	114.887	267.411	67.9358	115.741	131.478	116.749	131.478	35	135.439	1.030	0.00000
1		0.30	0 0.600	3.2000	450000	mv	MV 19 14-5	14-3-210	3011.27	0.000	0.998	1.083	1.090	1.170	1.030	1.160	1.030	35	135.439	1.030	0.000

Elastic Strength Check (LC_E) in graphic design

* LC_E : Load combination to check ELS(Elastic Limit State)

Code : Eurocode2:04,NTC2018 Unit : kN , m						Prima	ary Sortin	ig Option												
Sorted b	Sorted by Member Results Ostrength Property Ostrviceability				⊖ SE	ст 🖲) MEMB													
	Elastic																			
MEMB	SE	Se	ction	fck	fyk	OUK	Seis.	LC	M.Edy	M.Edz	Rat-My	Rat-Co	V_Rdc.end	V_Rds.end	V_Rdc.mid	V_Rds.mid	LC	V_Ed.end	Rat-V.end	Ash.req
SECT	L	Bc	Hc	Height	fyw	CHK	Class	В	M'.ydy	M'.ydz	Rat-Mz	m (F)	Rat-Vc.end	Rat-Vs.end	Rat-Vc.mid	Rat-Vs.mid	В	V_Ed.mid	Rat-V.mid	Rat-J
373) 25000.0 450000 OK N										404.470	40						
3/3		P30	0x60	25000.0	450000	or	ND	51	214.132	54.2597	0.849	0.087	106.276	131.478	105.268	131.478	43	105.100	0.989	0.00000

Serviceability Check (LC_S) in graphic design

* LC_S : Load combination to check SLS(Serviceability Limit State)

Sorted b	v © C) Mem) Prope	ber erty	Results (◯ Streng ● Servic ◯ Elastic	th eability :		⊖ SE	ECT ()) MEN	1B				
MEMB	SE	Sec	ction	fck	Stress Contr										
SECT	L	Bc	Hc	Height	fyw	CHK	LC	sig-ct	sig-cta	LC	sig-cc	sig-cca	LC	sig-s	sig-sa
373		P30x60		25000.0	450000	or		0.00000	2564.06	70	1124.94	15000.0		0.00000	0.00000
1		0.300	0.600	3.2000	450000	ок		0.00000	2304.50	10	1134.04	13000.0	-	0.00000	0.00000

2. Improvement of Non-dissipative Design as per NTC2018

Non-dissipative in flexural & Shear design : Graphic report

- Output a design results for ULS, ELS and SLS separately in design reports.

V_Ed /V_Rdc	1.81597 / 126.642 = 0.014	0.31087 / 118.248 = 0.003
V_Ed /V_Rds	1.81597 / 61.0435 = 0.030	0.31087 / 131.478 = 0.002
V_Ed /V_Rdmax	1.81597 / 497.250 = 0.004	0.31087 / 535 500 = 0.001
Shear Ratio	0.014 < 1.000 O.K	0.003 < 1.000 O.K
Asw-H_use	0.00067 m²/m, 2-P8 @150	0.00067 m²/m, 2-P8 @150
[MIDDLE]	y: 1 (1/2)	z: 1 (1/2)
Applied Shear Force (V_Ed)	1.81597 KN	0.31087 kN
V_Ed /V_Rdc	1.81597 / 127 858 = 0.014	0.31087 / 119.558 = 0.003
V_Ed /V_Rds	1.81597 / 61.0435 = 0.030	0.31087 / 131.478 = 0.002
V_Ed /V_Rdmax	1.81597 / 497 250 = 0.004	0.31087 / 535.500 = 0.001
Shear Ratio	0.014 < 1.000 O.K	0.003 < 1.000 O K
Asw-H_use	0.00067 m²/m, 2-P8 @150	0.00067 m²/m, 2-P8 @150

Design result for ELS(Elastic Limit State)

4. Elastic Bending Moment Capacity

	y: 2(l)	z: 2(l)
Moment (M.Ed)	81.7143 kN-m	21.7915 kN-m
Elastic Strength (Ml.yd')	254.437 kN-m	118.530 kN-m
Check Ratio	0.321 < 1.000 O.K	0.184 < 1.000 O.K
Check Combined Ratio (sqrt((M_Edy/M_)	/dy)^2 + (M_Edz/M_ydz)^2))	0.370 < 1.000 O.K
5. Elastic Shear Capacity		
[END]	y: 2(J)	z: 2(J)
Applied Shear Force (V_Ed) V_Ed / V_Rdc V_Ed / V_Rds V_Ed / V_Rdmax Shear Ratio Asw-H_use	12.1481 kN 12.1481 / 120.093 = 0.101 12.1481 / 61.0435 = 0.199 12.1481 / 497.250 = 0.024 0.101 < 1.000 O.K 0.00067 m²/m, 2-P8 @150	40.1526 kN 40.1526 / 111.195 = 0.361 40.1526 / 131.478 = 0.305 40.1526 / 335.500 = 0.075 0.361 < 1.000 O.K 0.00067 m²/m, 2-P8 @150
[MIDDLE]	y: 2 (1/2)	z: 2 (1/2)
Applied Shear Force (V_Ed) V_Ed / V_Rdc V_Ed / V_Rds V_Ed / V_Rdmax Shear Ratio Asw-H_use	12.1481 kN 12.1481 / 121.029 = 0.100 12.1481 / 61.0435 = 0.199 12.1481 / 497.250 = 0.024 0.100 < 1.000 O.K 0.00067 m ² /m, 2-P8 @150	40.1526 kN 40.1526 / 112.203 = 0.358 40.1526 / 131.478 = 0.305 40.1526 / 335.500 = 0.075 0.358 < 1.000 O.K 0.00067 m²lm, 2-P8 @150

Design result for SLS(Serviceability Limit State)

6. Serviceability : Stress Limit Check

	Load Combination	Stress(s)	Allowable Stress(sa)	Stress Ratio(s/sa)
Concrete (Tensile)	-	0.00	2564.96	0.0000
Concrete (Compression)	3(C)	1095.15	15000.00	0.0730
	-	0.00	0.00	****
Rebar	-	0.00	0.00	****
Check Linear Creep	****	*****	*****	****

3. Improvement for Shear design as per NTC2018

Design Shear force of primary elements according to NTC 2018

- When calculating a design shear force for primary elements, member force can be limited by a resistance demand for ELS load combinations.

7.2.2. **CRITERI GENERALI DI PROGETTAZIONE DEI SISTEMI STRUTTURALI** PROGETTAZIONE IN CAPACITÀ E FATTORI DI SOVRARESISTENZA La domanda di resistenza valutata con i criteri della progettazione in capacità può essere assunta non superiore alla domanda di resistenza valutata per il caso di comportamento strutturale non dissipativo. Le strutture di fondazione e i relativi elementi strutturali devono essere progettati sulla base della domanda ad essi trasmessa dalla struttura sovrastante (si veda § 7.2.5) attribuendo loro comportamento strutturale non dissipativo, indipendentemente dal comportamento attribuito alla struttura su di essi gravante. The resistance demand evaluated with the capacity design criteria Design report (Detail) can be assumed not higher than the resistance demand evaluated for the case of non dissipative structural behavior. [[[*]]] CALCULATE DATA OF SPECIAL PROVISIONS FOR SEISMIC DESIGN. (). Design parameters. -. fyk = 450000.00000 KPa. -. phi = 1.0 (). Bending strength for design shear force, 96.455 kN-m.((l, Clockwise)) 96.206 kN-m.((l, Clockwise)) 96.206 kN-m.((l, Counter-Clockwise)) 66.455 kN-m.((l, Counter-Clockwise)) -. Mel+ = -. MeJ- = -. Mel- = -. MeJ+ = (). Calculate design shear force according to special provisions for seismic design. -. Alpha1 = 1.0000 VzOrig = Design shear force by ULS load combination 4.3000 m. -. Span = -10.004 KN. (by Gravity-Direction Load). -. YzG Clockwise Vell_CW = VzG + Alpha1*(Mel+ + MeJ-)/Span = Vel2_CW = VzG - Alpha1*(Mel+ + MeJ-)/Span = Vel_CW = MAX[_|Vel1_CW], |Vel2_CW|] = 27.824 kN. -47.832 kN. Ve1(M) = Design shear force by flexural strength of member.47.832 kN. -. Counter-Clockwise Vell_CCW= VzG + Alpha1*(Mel- + MeJ+)/Span = Vel2_CCW= VzG - Alpha1*(Mel- + MeJ+)/Span = Vel_CCW = MAX[|Vel1_CCW|, |Vel2_CCW|] = 27.824 kN. -47.832 kN. Ve1(E) = Design shear force by ELS load combination.47.832 kN. Ve1(M) = MAX[|Ve1_CW], |Ve1_CCW]] = 47.832 kN. (Ve1(E) = 17.186 kN. (by Elastic Load Combination). Ve1 = MIN[Ve1(M), Ve1(E)] = 17.186 kN. V20rg = -18.902 kN. (by Strength Load Combination). V_Ed = MAX[|V20rg], Ve1] = 18.902 kN. 47.832 kN. (by Moment Strength).

3. Improvement for Shear design as per NTC2018

Design Shear force of primary elements according to NTC 2018

- When calculating a design shear force for primary elements, member force can be limited by a resistance demand for ELS load combinations.

Design Setting	Check off option	Check on option				
Seismic Design Parameter Ø Beam-Column Joint Design Gamma_rd Gamma_rd Not Confined Joint Strong Column Weak Beam SUM(M_Rc) > 1.3 Consider strong column-weak beam on last floor Select Ductility Class O CD'A' (High Ductility) O CD'B' (Medium Ductility) Design Method of Non-Dissipative Member M-C curve O Approximate Method 1	<pre>(). Design parameters. tyk = 450000.00000 KPa. tyk = 450000.00000 KPa. phi = 1.0 (). Bending strength for design shear force. Mel+ = 66.455 KN-m.((I, Clockwise)) MeJ+ = 95.206 KN-m.((I, Clockwise)) MeJ+ = 95.206 KN-m.((I, Clockwise)) MeJ+ = 66.455 KN-m.((I, Clockwise)) MeJ+ = 66.455 KN-m.((I, Clockwise)) (). Calculate design shear force according to special provisions for seismic design. Alphal = 1.000 Span = 4.3000 m. Y26 = -10.004 kN. (by Gravity-Direction Load). Clockwise Vell_CUW = V26 + Alphal+(Mel+ + MeJ-)/Span = 27.824 kN. Vel_CUW = MAX[Vell_CUW], Vel2_CUW] = 47.832 kN. Counter-Clockwise Vell_CUW = MAX[= 4.1120] Span = 27.824 kN.</pre>	<pre>(). Design parameters. - fyk = 450000.00000 KPa. - phi = 1.0 (). Bending strength for design shear force. - Mel+ = 66.455 kN+m.((), Clockwise)) - Mel- = 96.206 kN+m.((), Clockwise)) - Mel- = 95.206 kN+m.((), Clockwise)) - Mel- = 95.206 kN+m.((), Clockwise)) - Mel+ = 66.455 kN+m.((), Clockwise)) (). Calculate design shear force according to special provisions for seismic design. - Alphal = 1.0000 - Span = 4.3000 m. - V26 = -10.004 kN. (by Gravity-Direction Load). - Clockwise Vell_CUM = V26 + Alphal+(Mel+ + Mel-)/Span = 27.824 kN. Vel_CUM = V46 - Alphal+(Mel+ + Mel-)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel-)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel-)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel-)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel-)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel-)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_CUM = V46 + Alphal+(Mel+ + Mel+)/Span = 27.824 kN. Vel_UM = 27.824 kN.</pre>				
Non-Dissipative Member Non diss 1 v Secondary Seismic Member Secondary v Shear Force for Design Gamma_rd Beam 1 Column 1.1 Wall 1.2 Consider for Shear Wall alpha s may Consider for Shear Wall alpha s may for nimeau members	$(V_1 = MAX[Ve1_cW , Ve1_cCW] = 47.832 kN.$ $(V_2 = MAX[Ve1_CW , Ve1_CCW] = 47.832 kN.$ $(V_2 = MAX[V_2 Drg , Ve1] = 47.832 kN.$ $(V_2 = MAX[V_2 Drg , Ve1] = 47.832 kN.$ $(V_2 = MAX[V_2 Drg , Ve1] = 47.832 kN.$ $(V_2 = MaX[V_2 Drig, Ve1 (M)]$ $V_2 = Design shear force by load combination with only the second $	Vel(M) = MAX[Vel_CUN], Vel_CUN] = 47.832 kN. (by Moment Strength). Vel(E) = 17.186 kN. (by Elastic Load Combination). Vel = MIN[Vel(M), Vel(E)] = 17.186 kN. V2rg = -18.902 kN. (by Strength Load Combination). V_Ed = MAX[VzOrg], Vel] = 18.902 kN. > V_Ed = Max[VzOrig, Min[Ve1(M), Ve1(E)]] y gravity loads.				
Friction Coefficient for Wall Silding : 0.6	Ve1(M) = Design shear force by flexural strength of me	mber.				

Ve1(E) = Design shear force by ELS load combination.

Option is added.

4. Concrete design result for ELS load combination

Add Graphic result for ELS Load combination.

✓ ULS : Load combinations assigned to "Strength/Stress" type in Load combination dialog box

✓ ELS : Load combinations assigned to "Strength(Elastic)" type in Load combination dialog box

5. Improved Hinge Curve Model as per EC 8 :2004

New hinge curve model as per Eurocode 8 :2004

- Add a hinge curve with "Du update" type

[Calculation of Du (= θu , Ultimate Rotation)]

 $\theta_{\rm um} = \frac{1}{\gamma_{\rm el}} 0,016 \cdot (0,3^{\nu}) \left[\frac{\max(0,01;\omega)}{\max(0,01;\omega)} f_{\rm c} \right]^{0,225} \left(\min\left(9;\frac{L_{\rm V}}{h}\right) \right)^{0,35} 25^{\left(\alpha \rho_{\rm sc},\frac{f_{\rm yw}}{f_{\rm c}}\right)} (1,25^{100\,\rho_{\rm d}})$

[Calculation of Dy (= θy , Yielding Rotation)]

$$\theta_y = k \times \varepsilon_y \div Depth of element$$

* εy : Yielding strain at tensile face

		k									
	rec	tangular secti	circular	section							
hinge type	column	beam	wall	column	beam						
none	2.1	1.7	2	2.25	-						
PM e PMM	2.1	1.7	2	2.25	-						
Displacemet based Seismic Design of Structures- pg 165											
Priestley; Calvi; Kowalsky											

6. |rregularity reduction factors as per NSR-10

• Results > Results Tables > Story> Stiffness Irregularity Check, Capacity Irregularity Check, and Mass Irregularity Check

	Stiffne	ss Irreg	ularity	' Check			Upper Sto	ry Stiffness	Upper 3 Sto	ry Stiffness(Avg.)			
		(111)	(11)	(11)	(kN)	Story Stiffness	0.6K (Upper)	0.7K (Upper)	0.7K (3 Stories)	0.8K (3 Stories)	Remark	Ph	i_p
Ey	12F	46.00	4.00	-0.0000	0.00		0.00	0.00	0.00	0.00	Regular		
Ey	11F	42.00	4.00	-0.0000	0.00	-	-199998.58	-	-116665.84	-133332.39	Extreme Irregular		
Ey	10F	38.00	4.00	-0.0000	0.00	-	-264205.86	-	-270785.92	-309469.62	Extreme Irregular		
Ey	9F	34.00	4.00	-0.0000	0.00	-	-339744.66	-	-312646.87	-357310.71	Extreme Irregular		
Ey	8F	30.00	4.00	-0.0000	0.00	-	-406558.07	-	-392975.56	-449114.93	Extreme Irregular		
Ey	7F	26.00	4.00	-0.0000	0.00	-	-776743.33	-	-592295.69	-676909.36	Extreme Irregular		
Ey	6F	22.00	4.00	0.0000	0.00	1830963.85	-4291921.05	-	-2129253.18	-2433432.20	Regular		
Ey	5F	18.00	4.00	0.0000	0.00	1511336.03	1098578.31	-	-1543922.36	-1764482.70	Regular		
Ey	4F	14.00	4.00	0.0000	0.00	1154767.03	906801.62	-	-889210.44	-1016240.50	Regular		
Ey	3F	9.50	4.50	0.0000	0.00	3028926.91	692860.22	808336.92	1049315.61	1199217.84	Regular		
Ey	2F	5.00	4.50	-0.0000	0.00	-	1817356.15	2120248.84	1328840.33	1518674.66	Extreme Irregular		
Ey	1F	0.00	5.00	-0.0000	0.00	-	-688215.48	-	708555.90	809778.17	Extreme Irregular		
		_											_
1/5	Stiffness Irreg	ularity(X) (Stiffness	Irregularity()	0 /			<					

Ca	pacity	Irregul	arity	Check	Shear Jh1	Story Shear	Remark1	Phip1	Angle2	Story Shear Strength2	Upper Story Shear Strength2	Story Shear	Remark2	Phi	P
	(,	()	(19931)	(kN)	(kN)	Strength Ratio1			([deg])	(kN)	(kN)	Strength Ratio2			
12F	46.00	4.00	0.00	8786.5611	0.0000	0.0000	Regular	1.0	90.00	8552.2528	0.0000	0.0000	Regular		
11F	42.00	4.00	0.00	8786.5611	8786.5611	1.0000	Regular	1.0	90.00	8552.2528	8552.2528	1.0000	Regular		
10F	38.00	4.00	0.00	8786.5611	8786.5611	1.0000	Regular	1.0	90.00	8552.2528	8552.2528	1.0000	Regular		
9F	34.00	4.00	0.00	10218.4451	8786.5611	1.1630	Regular	1.0	90.00	9984.1368	8552.2528	1.1674	Regular		
8F	30.00	4.00	0.00	10218.4451	10218.4451	1.0000	Regular	1.0	90.00	9984.1368	9984.1368	1.0000	Regular		
7F	26.00	4.00	0.00	10478.7876	10218.4451	1.0255	Regular	1.0	90.00	10244.4793	9984.1368	1.0261	Regular		
6F	22.00	4.00	0.00	10478.7876	10478.7876	1.0000	Regular	1.0	90.00	10244.4793	10244.4793	1.0000	Regular		
5F	18.00	4.00	0.00	12821.8706	10478.7876	1.2236	Regular	1.0	90.00	12587.5623	10244.4793	1.2287	Regular		
4F	14.00	4.00	0.00	12821.8706	12821.8706	1.0000	Regular	1.0	90.00	12587.5623	12587.5623	1.0000	Regular		
3F	9.50	4.50	0.00	15392.7533	12821.8706	1.2005	Regular	1.0	90.00	15158.4450	12587.5623	1.2042	Regular		
2F	5.00	4.50	0.00	15392.7533	15392.7533	1.0000	Regular	1.0	90.00	15158.4450	15158.4450	1.0000	Regular		
1F	0.00	5.00	0.00	17484.7772	15392.7533	1.1359	Regular	1.0	90.00	17841.7063	15158.4450	1.1770	Regular	4	-

Capacity Irregularity

	Mass Irregularity Check		Adjacent Story Mass							
		l eguid		uss (y)	1.5M(Upper) (kN/g)	1.5M(Lower) (kN/g)	Story Mass Ratio	Remark	Phi_p	
Ex	Roof	50.00	0.00	333.843	0.000	612.228	0.545	Regular		1.0
Ex	12F	46.00	4.00	408.152	500.764	612.228	0.815	Regular		1.0
Ex	11F	42.00	4.00	408.152	612.228	624.901	0.667	Regular		1.0
Ex	10F	38.00	4.00	416.600	612.228	637.573	0.680	Regular		1.0
Ex	9F	34.00	4.00	425.049	624.901	639.878	0.680	Regular		1.0
Ex	8F	30.00	4.00	426.585	637.573	642.182	0.669	Regular		1.0
Ex	7F	26.00	4.00	428.121	639.878	662.919	0.669	Regular		1.0
Ex	6F	22.00	4.00	441.946	642.182	683.657	0.688	Regular		1.0
Ex	5F	18.00	4.00	455.771	662.919	727.651	0.688	Regular		1.0
Ex	4F	14.00	4.00	485.101	683.657	771.646	0.710	Regular		1.0
Ex	3F	9.50	4.50	514.431	727.651	802.248	0.707	Regular		1.0
Ex	2F	5.00	4.50	534.832	771.646	0.000	0.693	Regular		1.0
Ex	1F	0.00	5.00	147.850	802.248	0.000	0.184	Regular		1.0
\ <u>Ma</u>	ss Irregular	ity(X) 🔬 🛝	lass Irregularity(Y)	_						

Output reduction factors (Phi_p) <

✓ Note

According to Table A.3-7 in NSR-10, Gen is reporting Reduction factor, ø in seismic design forces to account for Irregularity check

1.Stiffness Irregularity(Soft Story) Check

- Regular Structures $\phi_a = 1.0$
- Irregular Structures $\phi_a = 0.9$
- Extreme Irregular Structures $\phi_a = 0.8$

2. Capacity Irregularity (Weak Story) check

- Regular Structures $\phi_a = 1.0$
- Irregular Structures $\phi_a = 0.9$
- Extreme Irregular Structures $\phi_a = 0.8$

3.Mass irregularity Check

- Regular Structures $\phi_a = 1.0$
- Irregular Structures $\phi_a = 1.0$

7. Improvement of wind pressure function

Input of wind pressure by table editing

- Wind Pressure generated by equation can be edited in table and updated to the model.

dd/M	odify/Show W	ind Pressure Fi	Gen	2020 ×		
Fund	ction ction Name :	Test				
Coo	rdinate Syste	m:		Rectangular 🗸 🗸 🗸		
Equ	ation :	Z*0,1				
		(Exam	ple : 0,7∗Z≠	Z, cos(TH)+R)		
Des	cription :					
	•					
Tabl	le Show Optic	IN				
Fixe	d Axis :	X, Y	~	Unit : m, [deg]		
Ζ	Start: 0	End :	6,01 I	ncrement : 0,601		
Fix (Coordinates	X	0	Y 0		
				Calculate		
			L	Calculate		
	X	Y	z	Wind Pressure		
	(m)	(m)	(m)	(kN/m²)		
1	0	0	0 604	0		
2	0	0	1.202	0.0001		
4	0	0	1.803	0.1803		
5	0	0	2.4	0.2404		
6	0	0	3.005	0.3005		
	0	0	3.606	0.3606		
9	0	0	4.207	0.4207		
10	0	0	5.409	0.5409		
11	0	0	6.01	0.601		
Inactive						
			0	K Cancel		

	tion Name :	Test					
Cool	rdinate Syster	n :		Rectangular 🕔	/		
Equa	ation :	Z∗0,1 (Exa	mple : 0.7*Z	 ∗Z. cos(TH)+B)			
Desc	cription :						
Tabl	e Show Optio	n					
Fixe	d Axis :	X. Y	~	Unit : m. [dec	1		
7	Stort 0	End :	6.01	Increment 1 0 601			
-		LIIU .	0,01		-		
Fix C	Coordinates	X	U	Y U			
				Calculate			
					_		- H-
	X (m)	Y (m)	Z (m)	Wind Pressure (kN/m²)	^		
1	0	0	0	0			
0	0	0	0.601	0.1			-
4	0	0	1.202	0.3			
3	0	0	4 000	0.0			
2 3 4	0	0	1.803	0.6			
2 3 4 5 6	0	0	1.803 2.404 3.005	0.6 0.4 0.3005			
2 3 4 5 6 7	0	0 0 0	1.803 2.404 3.005 3.606	0.6 0.4 0.3005 0.3606			
2 3 4 5 6 7 8	0 0 0 0 0	0 0 0 0	1.803 2.404 3.005 3.606 4.207	0.6 0.4 0.3005 0.3606 0.4207			
2 3 4 5 6 7 8 9	0 0 0 0 0 0	0 0 0 0 0	1.803 2.404 3.005 3.606 4.207 4.808	0.6 0.4 0.3005 0.3606 0.4207 0.4808			
2 3 4 5 6 7 8 9 10	0 0 0 0 0 0 0 0	0 0 0 0 0 0	1.803 2.404 3.005 3.606 4.207 4.808 5.409	0.6 0.4 0.3005 0.3606 0.4207 0.4808 0.5409			

When editing the table values, wind pressure is modified automatically.

8. Renewal of Rebar Information Dialog Box

- Provide rebar information for diameter, area, and weight in dialog box
- Add #2 and #12 rebar in U.S Customary (U.S Imperial) DB

ASTM BS/EN UNI IS GB CSA SS GOST AS/NZS #3 P5 P4 P6 d4 10M H5 d6 D6 #4 P6 P5 P8 d5 15M H6 d6 D6 #4 P6 P7 P6 P10 d6 20M H7 d10 D10 #6 P8 P12 d6 20M H8 d12 D12 #7 P9 P10 P16 d10 30M H9 d14 D16 #8 P10 P12 P18 d12 35M H10 d16 D22 #9 P11 P14 P20 d14 45M H11 d18 D22 #10 P12 P16 P22 d18 H13 d22 D24 #11 P18 P20 P24 d22 H20 d28 D32 #18									~
#3 P5 P4 P6 d4 10M H5 d6 D6 #4 P6 P5 P8 d5 15M H6 d8 D8 #5 P7 P6 P10 d6 20M H7 d10 D10 #6 P8 P12 d8 25M H6 d12 D12 #7 P9 P10 P16 d10 30M H9 d14 D16 #8 P11 P12 P16 d12 35M H10 d16 D22 #10 P12 P16 P22 d16 55M H11 d18 D22 #10 P12 P16 P22 d16 55M H12 d20 D24 #11 P18 P26 d18 H13 d22 D25 #14 P16 P20 P28 d20 H16 d25 D28 #18 P20 P22 P32 d22 H20 d28 D32 P25 P24 P36	ASTM	BS/EN	UNI	IS	GB	CSA	SS	GOST	AS/NZS
	_ #3 #4 ¥4 ¥6 ¥7 #6 #7 #8 #10 #11 #14 #18	P5 P6 P7 P8 P9 P10 P11 P12 P13 P16 P25 P32 P32 P40	P4 P5 P6 P8 P10 P12 P14 P16 P18 P20 P22 P24 P30 P30 P36 P36 P32 P36 P36	P6 P8 P12 P12 P16 P18 P22 P25 P28 P36 P36 P36	d4 d5 d8 d10 d12 d12 d14 d18 d20 d25 d25 d28 d32 d36 d40	10M 15M 20M 30M 35M 45M 55M	H5 H6 H7 H8 H9 H10 H11 H12 H13 H16 H20 H20 H32 H40	d6 d8 d12 d14 d16 d18 d20 d22 d25 d25 d25 d25 d25 d25 d25 d25 d25	D6 08 010 012 020 022 024 025 028 028 036 036 040

Gen 2020

Provide only the feature to select rebar size.

Rebar Information X US CUSTMARY(US) Rebar Code Dia Area Dia(Out) Weight ^ CHK Name (in) (in²) (in) (lbf/in) 0.2500 0.0500 0.2500 0.0139 #2 0.1100 0.0313 #3 0.3750 0.3750 #4 0.5000 0.2000 0.5000 0.0557 \square #5 0.6250 0.3100 0.6250 0.0869 #6 0.7500 0.4400 0.7500 0.1252 #7 0.8750 0.6000 0.8750 0.1703 Add #2 and #12 rebar #8 1.0000 0.7900 1.0000 0.2225 in U.S Customary(U.S) code #9 1.1280 1.0000 1.1280 0.2833 #10 1.2700 1.2700 1.2700 0.3586 #11 1.4100 1.5600 1.4100 0.4427 #12 1.5000 1.7600 1.5000 0.5387 1.6930 2.2500 1.6930 0.6375 #14 4.0000 2.2570 1.1333 #18 2.2570 п In addition, provide the detail information for Rebar DB OK Close

Gen 2021 v1.1 (New version)

9. Improvement of concrete shear strength in SMF as per ACI

Reduction factor (R) for Vc is not used in mid-span of member.

- 'Vc=0' is considered only both ends of the member.

oncrete Design Code	×
Design Code : ACI318M-14 🗸	3. Design for Shear
	[END]
Check Beam Deflection Apply Special Provisions for Seismic Design Seismic Design Parameter	Applied Shear Force (Vu) Design Shear Strength (φVc+φVs Shear Ratio As-H_req
Select Frame Type	
Special Moment Frames Intermediate Moment Frames	Applied Shear Forœ (Vu) Design Shear Strength (φVc+φVs
	Shear Ratio As-H reg
Consider strong column-weak beam on last floor Shear Wall Type	
Special BC Structural Wall	
- Boundary Element Method	
Displacement Based Method	3. Design for Shear
Deflection Amplification Eactor (Cd) 4.50	[END]
Important Factor (Ie) 1.20 - Stress Based Method	Applied Shear Force (Vu) Design Shear Strength (φVc+φV Shear Ratio
Shear for Design	
Update by Code	Applied Shear Force (Vu)
R+Vc(a1+SUM(Mpr)/L>max(Ve1,Ve2)/2),R= 0	Design Shear Strength (φVc+φV
Method	As-H_req
MAX(Ve1,Ve2) MIN(Ve1,Ve2) Ve1 Ve2	
Ve1 , Vg + a1+SUM(Mpr)/L , a1 = 1	
Ve2 , Vg + a2+Veq (Beam) , a2 = 1	🛛 🛏 Vc in Design =
	_

[END]	v: 8(J)	z: 8(J)
Applied Shear Force (Vu) Design Shear Strength (φVc+φVs) Shear Ratio As-H_req	0.5926 tonf 0.00000 + 62.4078 = 62.4078 tonf 0.650 < 1.000 O.K 0.00330 m²/m, 4-D13 @100	20.4299 tonf 0.00000 + 62.4078 = 62.4078 ton 0.327 < 1.000 O.K 0.00166 m²/m, 4-D13 @100
[MIDDLE]	y: 8 (1/2)	z: 8 (1/2)
Applied Shear Force (Vu)	40.5926 tonf	20.4299 tonf
Design Shear Strength (φVc+φVs) Shear Ratio	0.00000 + 41.6052 = 41.6052 tonf 0.976 < 1.000 O.K	0.00000 + 41.6052 = 41.6052 ton 0.491 < 1.000 O.K
As-H reg	0.00330 m²/m, 4-D13 @150	0.00166 m²/m, 4-D13 @150

Gen 2021 v1.1 (New version)

Design for Shear		
[END]	y: 8(J)	z: 8 (J)
Applied Shear Force (Vu)	40.5926 tonf	20.4299 tonf
Design Shear Strength (φVc+φVs)	0.00000 + 62.4078 = 62.4078 tonf	0.00000 + 62.4078 = 62.4078 tonf
Shear Ratio	0.650 < 1.000 O.K	0.327 < 1.000 O.K
As-H_req	0.00330 m²/m, 4-D13 @100	0.00166 m²/m, 4-D13 @100
[MIDDLE]	y: 10 (1/2)	z: 3(1/2)
Applied Shear Force (Vu)	50.2696 tonf	36.5179 tonf
Design Shear Strength (φVc+φVs)	33.0322 + 41.6052 = 74.6374 tonf	32.0340 + 41.6052 = 73.6392 tonf
Shear Ratio	0.674 < 1.000 O.K	0.496 < 1.000 O.K
As-H_req	0.00140 m²/m, 4-D13 @150	0.00083 m²/m, 4-D13 @150

$= R^*Vc$

\checkmark Note

Seismic provision in ACI 318M-19

18.6.4 Transverse reinforcement

18.6.4.1 Hoops shall be provided in the following regions of a beam:

(a) Over a length equal to twice the beam depth measured from the face of the supporting column toward midspan, at both ends of the beam

(b) Over lengths equal to twice the beam depth on both sides of a section where flexural yielding is likely to occur as a result of lateral displacements beyond the elastic range of behavior.

18.6.5 Shear strength

18.6.5.1 *Design forces*—The design shear force V_e shall be calculated from consideration of the forces on the portion of the beam between faces of the joints. It shall be assumed that moments of opposite sign corresponding to probable flexural strength, M_{pr} , act at the joint faces and that the beam is loaded with the factored tributary gravity load along its span.

18.6.5.2 Transverse reinforcement—Transverse reinforcement over the lengths identified in 18.6.4.1 shall be designed to resist shear assuming $V_c = 0$ when both (a) and (b) occur:

(a) The earthquake-induced shear force calculated in accordance with 18.6.5.1 represents at least one-half of the maximum required shear strength within those lengths. (b) The factored axial compressive force P_u including earthquake effects is less than $A_{efc'}/20$.

10. Beam End Offset for Asymmetric setting

Add element type (Asymmetric)

- Set a beam end offset by each direction.

11. Static earth pressure function

Add static earth pressure of function type.

- When editing the table values, earth pressure shape in the model is modified automatically.

12. Elastic link graphic result in pushover analysis

Add graphic output of the elastic link (multi-linear type) in pushover analysis

Pushover > > Pushover Results > Pushover Smart Graph > Elastic Link Graph

13. Debonded Length of Pretensioned Beam

- Debonded length of pretensioned beam can be directly defined when creating strands from the 'Tendon Profile' dialog box.
- Define the actual whole length of strand including debonded parts at both ends and then enter the lengths for debonded parts.

Load > Temp./Prestress > Prestress Loads > Tendon Profile

14. Revit 2021 Interface

Gen-Revit Link

- File > Import > midas Gen MGT File
- File > Export > midas Gen MGT File

	Functions	Revit <> Gen
	Structural Column	<>
	Beam	<>
Linear	Brace	<>
Elements	Curved Beam	>
	Beam System	>
	Truss	>
	Foundation Slab	<>
	Structural Floor	<>
Planar	Structural Wall	<>
Elements	Wall Opening & Window	>
	Door	>
	Vertical or Shaft Opening	>
	Offset	>
	Rigid Link	>
	Cross-Section Rotation	>
	End Release	>
Boundary	Isolated Foundation Support	>
	Point Boundary Condition	>
	Line Boundary Condition	>
	Wall Foundation	>
	Area Boundary Condition	>
	Load Nature	>
	Load Case	>
Lood	Load Combination	>
LUdu	Hosted Point Load	>
	Hosted Line Load	>
	Hosted Area Load	>
Other	Material	<>
Parameters	Level	>

1. Report of Excel format

Generate a report of excel format.

Member Report						
100% V Print Save	Report Option	Summary Report V	Include Input Data			
[Calculation Summary (Require	Word Document	0.50 0.60 0.70 0.80 7	0.90 1.00 1.10 1.20 1.30 1.40 1.50			
Min. of Rebar Diameter	E LibXL Spreadshe	et	0.94			
Max. of Repar Diameter	🛍 Text File	0.50 0.60 0.70 0.80	0.90 1.00 1.10 1.20 1.30 1.40 1.50			
Check Items	End	Center	Remark			
d _{bmax} (mm)	15.90	15.90	-			
d _{bmin} (mm)	9.530	9.530				
d _{breq} (mm)	12.00	12.00	-			
d _{bhoop} (mm)	12.70	12.70	9.530 < d _b < 15.90			
d _{bhoop}	$d_{bmin} < d_{bhoop} < d_{bmax}$	$d_{\text{bmin}} < d_{\text{bhoop}} < d_{\text{bmax}}$	-			

Member List Report

<u>_</u>	Start Page 🛛 M	ember Memt	ber List D	rawing Q	uantity				▼ ×
					Material				
CHK	Member	Apply	E du	F	E.e.				Shape
CHIX	Name	Member To	(MPa)	(MPa)	(MPa)	Steel	Stud	Туре	Width (mm)
	SC01	Dwg & Report	24.00	400.00	400.00	SS275	SS275	Rectangle	600.00
Al	None In	vert Apply	Design	Check R	leport E	xcel File	Auto Resize	Ctrl+Up/Down	to Copy
/lessa	lessage Excel Spreadsheet								
'he pr	oject will be autor	matically saved.			X	LibXL Spr	eadsheet		

1. Report of Excel format

Excel Report

- Provides high-quality output
- All functions of Excel can be used.

(5) Calculate the Horizontal Ground Reaction Force Coefficient $\left(\frac{\kappa_H}{Layer}^2\right)$

$$\cdot \frac{K_{H1} = \frac{4,082kN}{m^2}}{m}$$

$$\cdot \frac{K_{H2} = \frac{5,695kN}{m^2}}{m}$$

$$\cdot \frac{K_{H3} = \frac{8,770kN}{m^2}}{m}$$

(6) Calculate Displacement of Ground (Load Combination Factor is applied.)

		· · · · · · · · · · · · · · · · · · ·			
Н	u(z)	u(z)-u(z)B	KH	p(z)	p(z) I/R
(m)	(mm)	(mm)	(kN/m²/m)	(kN/m²)	(kN/m²)
0.000	14.17	14.17	4,082	57.84	23.14
3.000	12.62	12.62	4,082	51.54	20.61
3.333	12.27	12.27	4,082	50.09	20.04
3.333	12.27	12.27	5,695	69.88	27.95
6.000	8.329	8.329	5,695	47.43	18.97
6.667	7.085	7.085	5,695	40.35	16.14
6.667	7.085	7.085	8,770	62.13	24.85
9.000	2.217	2.217	8,770	19.44	7.776
10.00	0.000	0.000	8,770	0.000	0.000

LibXL Report

- Very fast output generation speed
- · Expression in the same format as Text Report

(2) Calculate the Acceleration Response Spectrum (Sa)

- Fa = 1.120
- Fv = 0.840
- SDS = 2.5 S Fa x 2 / 3 = 0.373
- SD1 = S Fv x 2 / 3 = 0.112
- T0 = 0.2 SD1 / SDS = 0.0600 sec.
- TS = SD1 / SDS = 0.300 sec.
- TL = 5.000 sec.
- Sa = 2.746m/s²
- (3) Calculate the Acceleration Response Spectrum of Base Rock (Sv)
 - \cdot Sv = Sa / ω 0 = 0.175m/s
- (4) Calculate the Horizontal Ground Reaction Force Coefficient (KH / Layer 1)
 - KH1 = 4,082kN/m²/m
 - KH2 = 5,695kN/m²/m
 - KH3 = 8,770kN/m²/m
- (5) Calculate the Horizontal Ground Reaction Force Coefficient (KH / Layer 2)
 - KH1 = 4,082kN/m²/m
 - KH2 = 5,695kN/m²/m
 - KH3 = 8,770kN/m²/m

(6) Calculate Displacement of Ground (Load Combination Factor is applied.)

н	u(z)	u(z)-u(z)B	KH	p(z)	p(z) / R
(m)	(mm)	(mm)	(kN/m²/m)	(kN/m²)	(kN/m²)
0.000	14.17	14.17	4,082	57.84	23.14
3.000	12.62	12.62	4,082	51.54	20.61
3.333	12.27	12.27	4,082	50.09	20.04
3.333	12.27	12.27	5,695	69.88	27.95
6.000	8.329	8.329	5,695	47.43	18.97
6.667	7.085	7.085	5,695	40.35	16.14
6.667	7.085	7.085	8,770	62.13	24.85
9.000	2.217	2.217	8,770	19.44	7.776
10.00	0.000	0.000	8,770	0.000	0.000

2. SRC column module with box and pipe shape

- Applied Design Code : AISC-LRFD16(M), 10(M)
- Applied Steel Shape : H section, Box, Pipe

Mode/Link RC Steel	SRC Aluminum Reinforce Load Option Tool View Help	
Composite Beam Column SRC		
WorkBar 👻 🕈	Start Page Member Member List Drawing Quantity	▼ X Report
Add new member	General	100% V Print Save Report Option Detail Report V
System SRC 🗸	Member Name SC01 Double click to 200m	
Type Column V	Apply this Member to Dwg & Report	1. Calculation Summary (1) Requirement for Material
Name	Section Force	Category Value Criteria Ratio
Option Add	Material	Min. of Concrete Strength (MPa) 24.00 21.00 0.87
Keep Sect. & Bar Data		Max. of Concrete Strength (MPa) 24.00 69.00 0.34
PC Steel SRC Aluminum Painforce		Max. of Steel Strength (MPa) 248 525 0.47
	Main Bar Job.013 V KSI 4 H	Max. of Rebar Strength (MPa) 400 550 0.72
SRC Design Procedure	Hoop Bar 58.015 V ksi	(2) Moment Magnification Factor
SRC : AISC-LRFD16M		Category Value Criteria Ratio
Rebar Code : ASTM	Stud A36 V	Moment Magnification Factor (X) 1.000 1.400 0.71
Material DB : ASTM09	Shape	Moment Magnification Factor (Y) 1.000 1.400 0.71
Section Code : AISC10(US)	Rectangular Oirde	(3) Design Parameter
Design Option (Member)	Section (Concrete)	Category Value Criteria Ratio
Drawing Option (Member)	Width 40.00 in 40	Min. of Rebar Area 0.00593 0.00400 0.67
Report Option	Height 40.00 in	Max. of Rebar Area 0.00593 0.0400 0.14
Preference	Length(x) 11.48 ft Section PM Curve	Min. of Steel Area 0.0131 0.0100 0.76
Composite Beam	Length(y) 11.48 ft Rebar	Space of Main Rebar (mm) 52.70 40.00 0.75
🖃 区 Column (1)	Kx 1.00 MAIN BAR	(/) Moment Canacity
SC01	Ky 1.00 Layer No - Row - Main Dc	(4) monetic capacity
CFT Column	Layer 1 12 - 4 - #8 2.45 in	Category Value Criteria Ratio
	Max.Num Maximum Rebar Layout (Layer 1) : 40-11-#8	Axial Capacity (KN) 222 25,956 0.011
	HOOP BAR	Moment Capacity (X) (kN-m) 2.200 204 0.01
	Use DB HSS14X10X.500 V End #3 @ 5.91 in Use User Input	Moment Capacity (KMm) 2.200 2.30 0.01
	H 14.00 in A Center #3 @ 11.81 in	Molifelit Capacity (NVIII) 5.180 500 0.01
	B 10.00 in	(5) Shear Capacity (End)
	tw Box V) O Identically Distribute	Category Value Criteria Ratio
	tf 3.07 in)	Rebar Spacing (X) (mm) 150 400 0.37
	H Section	Rebar Spacing (Y) (mm) 150 400 0.37
	Box Dar	Shear Capacity (X) (kN) 0.000 856 0.00
	Pipe	Shear Capacity (Y) (kN) 0.000 1,109 0.00
	Design(F4) Check(F5) Report Apply(F3)	
1	Added Box and Pipe shape	

2. SRC column module with box and pipe shape

3. Midas link Option

• Add "by all combination" type in load combination type.

Link Option > Member Data

- Supporting linkage feature for all combinations created in Gen

[by All Load Combination] Support List

✓ RC

Column / General Section Column Shear Wall / Combined Wall Footing (Isolated/Combined/Strip) Anchor Bolt

✓ Steel

Beam / Column Bolt Connection (EC3) Moment Connection(KSSC, AISC, EC3) Baseplate / Embedded Plate Web Opening Welding

✓ SRC

Column CFT Column

✓ Aluminum

Beam / Column General Section Beam / Column

✓ Reinforce

Reinforced Beam Reinforced Column

3. Midas link Option

3. Midas link Option

Example for "by All Combination" Type

General			Daukla alah i	- 7								100%	~	Print	Save	Report	Option	Summar	y Report	~	Ind	ude Input Data		
Member Name	5~6C1	1(600)	Double click	0_2000					-	-		1. Calcu	lation	Summary										
Apply this Membe	er to Dwg &	Report V		•	•	•	•	•				(1) Chee	ck Ma	gnified Mo	ment									
Material		-		•				•		Loa	id Con	binations												×
Concrete	24 ~	MPa																		_				
Main Bar	400 ~	MPa		•				•••••		SN	СНК	NAME		Pu (kN)	Mux (kN.m)	Muy (kN.m)	Vux (kN)	Vuy (kN)	Cmx	Cmy	βdns	Description		<u>^</u>
Hoop Bar	400 ~	MPa							EDA	M	5	d CB4(601-1)		4597.39	67.72	121.24	62.03	34.96	0.850	0.850	0.209	1.2001 + 1.60.)		6
Light Weight (Concrete			· · · ·				·····	V	in v		d CB13(679-1)		3097.68	55.56	-18.87	148.31	108.95	0.850	0.850	0.794	1.2(D) + 1.0(1.0(1.54)(RY/R)))+RY(ES))	+(
Factor	1 ~			•				•	V	uv	v V	cLCB25(678-J)		2251.17	-26.17	29.29	-66.92	-269.08	0.850	0.850	0.806	1.2(D) - 1.0(1.0(1.13)(RX(RS)	+RX(ES))·	+0
Shape												-I CR2(600 T)		2619.42	146.21	46.40	22.71	70.26	0.950	0.950	1 000	1.4(5)		
Rectangle	◯ Circle			•	•		•	•	1			cLCD3(600-1)		2010.42	-140.31	44.26	-22.71	-70.30	0.850	0.050	1.000	1.4(D)		-
Section									- 4			d CB4(600-3)		2093.45	-190 37	-66 44	-22.71	-101 31	0.850	0.850	0.728	1.7(D) ± 1.6(L)		-
145 data	800.00						_		4		े ज	d CB4(600-1)		3011 15	215.88	63.13	-32.39	-101.31	0.850	0.850	0.720	1.2(D) + 1.6(L)		-
Width	800.00			┥──		80	0		5			d CB5(600-1)		2828.00	-06.00	-59.83	-20.78	-52.45	0.850	0.850	0.811	1.2(D) ± 1.3WINDCOMB1 ± 1	0(1)	- 1
Length(x)	4.00]	Section		OPM	-Curve			6		<u>م</u>	d CB5(600-1)		2755 70	112.83	59.29	-29.78	-52.45	0.850	0.850	0.806	1.2(D) + 1.3WINDCOMB1 + 1		- 1
Length(v)	4.00]m	Rebar		0				ب ا ا		1	cLCB5(600-5)		2723.82	-154.22	-107.49	-54.50	-82.79	0.850	0.850	0.811	1.2(D) + 1.3WINDCOMB2 + 1	.0(1)	-
Kx	* 1.00					MA	IN BAR				<u> </u>	cl CB6(600-1)		2651.51	176.94	110.49	-54.50	-82.79	0.850	0.850	0.806	1.2(D) + 1.3WINDCOMB2 + 1	.00)	-
Ку	* 1.00		Layer	No	- F	Row -	Main	Cc			5	cl CB7(600-T)		2709.58	-233.77	-53, 10	-25.31	-124.56	0.850	0.850	0.811	1.2(D) - 1.3WINDCOMB1 + 1	0(1)	-
Avial Force & Mon	nent		Layer 1	18	-	6 -	D22	76.20 m	n 10	0	v	cLCB7(600-J)		2637.28	264.47	48.14	-25.31	-124.56	0.850	0.850	0.806	1.2(D) - 1.3WINDCOMB1 + 1	0(L)	-
Avial	4597.39	kN	Layer 2		-	-	_	m	n 1:	1	V	cLCB8(600-I)		2813.77	-176.54	-5.44	-0.60	-94.22	0.850	0.850	0.811	1.2(D) - 1.3WINDCOMB2 + 1	0(L)	_
Apply to Shea	r Check		Layer 3		-	-		m	n 12	2	~	cLCB8(600-J)		2741.46	200.35	-3.06	-0.60	-94.22	0.850	0.850	0.806	1.2(D) - 1.3WINDCOMB2 + 1	0(L)	-
Mamank(s)	67.72	kN m	Max Num.		Max	imum Re	bar Layou	t (Layer 1) : 32	-9- 13	3		cLCB9(600-I)		2480.41	70.59	-3.62	0.68	34.75	0.850	0.850	0.811	1.2(D) + 1.0(1.0(1.13)(RX(RS	6) +RX(ES)))+(
Moment(x)	121.24	kN m		10.40		НО	OP BAR		- 14	4	◄	cLCB9(600-J)		2408.10	428.32	85.61	0.68	34.75	0.850	0.850	0.806	1.2(D) + 1.0(1.0(1.13)(RX(R	6) +RX(ES)))+(
		1990111	End	010	@ 20	0.00	mm	V Use User I	npi 1!	5	•	cLCB10(600-I)		2458.49	55.38	-22.95	-11.56	26.57	0.850	0.850	0.811	1.2(D) + 1.0(1.0(1.13)(RX(R	6)-RX(ES))	+0.
Shear Force			Center	010	@ 20	0.00			- 16	6	7	cLCB10(600-J)		2386.19	445.83	115.20	-11.56	26.57	0.850	0.850	0.806	1.2(D) + 1.0(1.0(1.13)(RX(R	6)-RX(ES))	+0.
Axial(x)	3097.68	kN	Design Option					Spacing Limit o	fM 17	7	V	cLCB11(600-I)		2558.56	47.81	-73.87	-37.26	23.09	0.850	0.850	0.811	1.2(D) + 1.0(1.0(1.13)(RX(R	6) +RX(ES)))-0. 🗸
Shear(x)	148.31	kN	User Define	e Reinfo	rcement			O Do not splic	e <															>
Axial(y)	2251.17	_ KN	Min, Ratio	0.00	0			50% Splice		All	No	ne Invert	A	dd Inse	rt <u>D</u> elet	e (OK I	Cancel						
Shear(y)	-269.08	KN	Max, Ratio	0.00	0			100% Splice		_		Rep	arnau	0 (Will.)										
Coefficient / Facto	deficient / Factor Saismir Dacion Tia Bar																							
Cmx	0.850		Apply Special Provisions Apply to Shear					_{ear} 5.	C	lick	"Load Co	omb	binatio	ns" bı	itton.									
T YY	0.850		SMF		- 0	OMF		Makerial 4	00	~										-	,			
Ins	0.709		Apply Plots Provisions, KDS 11 17 00 6. Check a load combination name and end position of member before design/check.																					
Load	Combinations (592	2)	Apply Pilot	is Guidel	line, MOI	LΠ		Repar D		*	In th		f D	Cash	mno	mamh	or ford		1000		nd n	or load combinat	ion oi	ro im

* In the case of RC columns, member forces of I and J-end per load combination are imported. Recommended to check the design position.

Design(F4) Check(F5)

Apply(F3)

Report ...

4. Combined footing design as per Eurocode

Support combined footing design as per Eurocode 2: 04

4. Combined footing design as per Eurocode

Procedure of Combined Footing Design

Denne Section								
Section Load	Column							
Material								
Concrete	25	∼ MPa						
Main Bar	400	∼ MPa						
Footing								
Depth	500.00	mm						
Width	3.00	m						
Cover	80.00	mm						
Ext. (Left.)	1.00	m						
Ext. (Right)	1.00	m						
Soil Bearing	100.00	КРа						

Section Load Column Design Load Surface Load 5.00 KPa Weight Density 18.00 ♣ KV/m³ Height 0.50 m ✓ Include Self-Weight ✓ Include Surcharge Load Load Factor Dead Load 1.000 ↓ Live Load 1.000 ↓ Shear Offset Information SN Offset Factor 1 1 0.25 2 2 0.50 3 3 0.75 4 4 1.00 5 5 1.25 6 6 1.50 7 7 1.75 ↓ Sort Add Insert Delete	Define Load										
Design Load Surface Load Surface Load Weight Density Iso Indude Self-Weight Shear Offset Information Solution Solution Sort Add Insert Delete	Section 10	ad Column									
Design Load Surface Load 5.00 KPa Weight Density 18.00 ♦ kN/m³ Height 0.50 m ✓ Include Self-Weight ✓ Include Surcharge Load Load Factor Dead Load 1.000 Live Load 1.000 ✓ Shear Offset Information Shear Offset Factor ↑ 1 0.25 2 0.50 3 0.775 ↓ ↑ 4 1.000 ≶ 1.25 ↓ 6 1.50 ↑ ↓ ↓ Sort Add Insert Delete	Section Los										
Surface Load 5.00 KPa Weight Density 18.00	Design Load	d									
Weight Density 18.00 ▲ kN/m³ Height 0.50 m ✓ Include Self-Weight ✓ Include Surcharge Load Load Factor Dead Load 1.000 ✓ Live Load 1.000 ✓ Iive Load Shear Offset Information Shear Offset Factor ↑ 1 0.25 2 0.50 3 0.75 ↓ ↑ 4 1.00 5 1.25 ↑ 6 1.50 ↑ ↓ ↓ 0 7 1.75 ↓ ↓ Sort Add Insert Delete	Surface Loa	ad 5.00 KPa									
Height 0.50 m ✓ Include Self-Weight ✓ ✓ Include Surcharge Load Load Factor Dead Load 1.000 Live Load 1.000 Shear Offset Information Shear Offset Information Shear Offset Information 1 0.25 2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 o 7 0.0 Sort Add	Weight Der	nsity 18.00 + kN/m ³									
✓ Include Self-Weight ✓ Include Surcharge Load Load Factor Dead Load 1.000 ∨ Live Load 1.000 ∨ Shear Offset Information Shear Offset Information Shear Offset Information 1 0.25 2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 0 7 0.0 Sort Add	Height	0.50 m									
✓ Indude Surcharge Load Load Factor Dead Load 1.000 Live Load 1.000 Shear Offset Information Shear Offset Information Shear Offset Information 3 0.75 4 1.000 5 1.25 6 1.50 7 1.75 0 2.00 Sort Add Insert Delete	☑ Include Self-Weight										
Shear Offset Information SN Offset Factor 1 0.25 2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 0 2.00 Sort Add Insert Delete	🗹 Include	Surcharge Load									
Dead Load 1.000 V Live Load 1.000 V Shear Offset Information SN Offset Factor 1 0.25 1 2 0.50 3 3 0.75 4 4 1.00 5 5 1.25 6 6 1.50 7 7 1.75 V Sort Add Insert	Load Factor										
Shear Offset Information SN Offset Factor 1 0.25 2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 0 2.00 Sort Add Insert Delete	Dead Load	1.000 ~									
Shear Offset Information SN Offset Factor 1 0.25 2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 Sort Add Insert Delete	Live Load	1.000 ~									
SN Offset Factor 1 0.25 2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 Sort Add Insert Delete	Shear Offse	et Information									
1 0.25 2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 0 2.00 Sort Add Insert Delete	SN	Offset Factor									
2 0.50 3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 0 2.00 Sort Add Insert Delete	1	0.25									
3 0.75 4 1.00 5 1.25 6 1.50 7 1.75 o 7.00 Sort Add Insert Delete	2	0.50									
4 1.00 5 1.25 6 1.50 7 1.75 o 7.00 Sort Add Insert Delete	3	0.75									
5 1.25 6 1.50 7 1.75 o 7.00 Sort Add Insert	4	1.00									
6 1.50 7 1.75 o 7.00 Sort Add Insert Delete	5	1.25									
7 1.75 ° 2.00 Sort Add Insert Delete	6	1.50									
Sort Add Insert Delete	7	1.75									
Sort Add Insert Delete	•	2.00									
	Sort	Add Insert Delete									

Apply SLS I	Load Combina Load Combina	tion tion
Select Column		
C01		Add
C01		Insert
C02		Delete
		Column Data
Cx Cy Span	500.00 500.00	mm mm
Position	Internal	~
Service Load		
N.Ed,s	15.00	kN
Loa	d Combination	ns (1)

Define Rebar Arrangement

Bar Arrangement (X-Dir.)									
Rebar Position :	C01	C01							
]	Items							
Bottom (mm)	#7	0	150.00						
Max. Spacing(mm)	#7	#7 @							
Moment (kN.m/m)	1	14.38							
Eff. Width(mm)		3000							

Step 1. Define concrete, rebar material, soil bearing and footing element information.

Step 2. Define Load Data. (Design load, factor, shear offset information) **Step 3.** Define column element and applied load information.

Step 4. Define Bar arrangement layout & spacing

4. Combined footing design as per Eurocode

Summary design report

3. Check 1Way Shear Capacity (Unit : kN)

Check Items	Calculated	Criteria	Ratio
One Way Shear-X	72.59	1,046	0.0694

4. Check 2Way Shear Capacity (Unit : MPa)

Check Items	Calculated	Criteria	Ratio
Two Way Shear-Column Face	0.184	3.825	0.0480
Two Way Shear-UserD	0.107	0.431	0.248
Two Way Shear-2D	0.0193	0.431	0.0447
Two Way Shear	0.107	0.431	0.248

5. Check Moment Capacity (Unit : kN·m/m)

Check Items	Calculated	Criteria	Ratio
Moment-X Direction(Cantilever)	0.0140	359	0.0000391
Moment-X Direction(Column)	14.38	359	0.0400
Moment-X Direction(Span)	-17.98	359	0.0500
Moment-X Direction	-17.98	359	0.0500
Moment-Y Direction	6.573	112	0.0589

3. Check One-Way Shear (Direction X)

(1) Calculate ratio of shear capacity

1											
	Column	D _{off} (mm)	k	ρ	V _{Rdx1} (kN)	V _{Rdx2} (kN)	V _{Ed} (kN)	V _{Rd,max} (kN)	Ratio	Remark	Diagram
	C01	409	1.699	0.00631	1,046	793	72.59	1,046	0.0694	ОК	
	C02	409	1.699	0.00631	1,046	793	72.59	1,046	0.0694	ОК	

- k = min [1 + 200/d , 2.0] = 1.699
- $p_1 = min[A_{s1} / b_w d, 0.02] = 0.00631$
- + $C_{\text{Rd,c}}$ = 0.18 / $\gamma_{\rm c}$ = 0.120
- $V_{Rdx1} = [C_{Rd,c} k (100 \rho_1 f_{ck})^{1/3} + k_1 \sigma_{cp}] b_w d = 1,046 kN$
- $V_{Rdx2} = [0.035 k^{3/2} f_{ck}^{1/2} + k_1 \sigma_{cp}] b_w d = 793 kN$
- V_{Rdx} = V_{Rd,c} = 1,046kN
- V_{Edx} = 72.59kN
- + V_{Edx} / V_{Rdx} = $0.0694 \rightarrow 0.K$

4. Check Two-Way Shear

(1) Calculate Shear at Face of Column

Column	Position	Offset (mm)	U (mm)	β	k	V _{Ed} (MPa)	V _{Rd,max} (MPa)	Ratio	Remark
C01	Interior	0.000	2,000	6.497	0.000	0.184	3.825	0.0480	ок
C02	Interior	0.000	2,000	6.497	0.000	0.183	3.825	0.0478	ОК

U = 2,000mm

•
$$a = (\frac{e_x}{b_y})^2$$
, $b = (\frac{e_y}{b_x})^2$

• $v_{Ed} = \frac{p \cdot v_{Ed}}{U d} = 0.184MPa$

+ f_{cd} = α_{cc} f_{ck} / γ_{c} = 0.000MPa

5. Calculate moment capacity

(1) Calculate moment capacity (Direction X)

Position	Top/Bottom	f _{yd} (MPa)	z (mm)	A _s (mm²)	M _{Ed} (kN·m/m)	M _{Rd} (kN·m/m)	Ratio	Remark
Cantilever(L)	Bottom	348	400	2,581	0.0140	359	0.0000391	ок
Colm (C01)	Bottom	348	400	2,581	14.38	359	0.0400	ОК
Span (C01-C02)	Тор	348	400	2,581	-17.98	359	0.0500	ОК
Colm (C02)	Bottom	348	400	2,581	14.38	359	0.0400	ОК
Cantilever(R)	Bottom	348	400	2,581	0.00746	359	0.0000208	ОК

Detail design report

(2) Bending Moment Diagram (Direction X)

5. Reporting speed for MS word format

• Reporting time for MS word format has been reduced by improving algorithm.

[Reporting Time : Design+ 2020 vs Design+ 2021 (New Version)]

99% reduction in reporting time

