
Release Note

Release Date: August. 2019

Product Ver.: midas Gen 2020 (v1.1) and Design+ 2020 (v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

• mid

• midas Gen

1)	Non-Dissipative Element Design as per NTC2018	4
2)	Enhancement of Stability coefficient table as per NTC 2018	9
3)	Added Spectrum as per NTC 2018 in Static seismic load & Response Spectrum	10
4)	Added user input for "qo" in RC design setting as per EC2	11
5)	Added "Update Rebar Option" in shell/slab/wall design	12
6)	Improvement of graphic report for column design	13
7)	Specify Moment-Rotation Hinge Properties with multi curve	14
8)	Added name box in thickness properties.	15
9)	Bilinear type spring stiffness for surface spring support	16
10)) Force/Stress contouring based on center value of plate elements	17
11)	Added "Node" icon in tool bar	18
as	Design+	
1)	Added moment bolt connection as per AISC	20

midas Gen

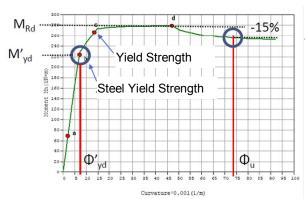
In NTC 2018

NTC18 7.2.2. CRITERI GENERALI DI PROGETTAZIONE DEI SISTEMI STRUTTURALI

COMPORTAMENTO STRUTTURALE

Le costruzioni soggette all'azione sismica, non dotate di appositi dispositivi d'isolamento e/o dissipativi, devono essere progettate in accordo con uno dei seguenti comportamenti strutturali:

a) comportamento strutturale non dissipativo,


oppure

b) comportamento strutturale dissipativo.

7.4. COSTRUZIONI DI CALCESTRUZZO

7.4.1. GENERALITÀ

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature deve essere valutata in accordo con le regole di cui al § 4.1, senza nessun requisito aggiuntivo, a condizione che in nessuna sezione si superi il momento resistente massimo in campo sostanzialmente elastico, come definito al § 4.1.2.3.4.2. Per i nodi trave-pilastro di strutture a comportamento non dissipativo si devono applicare le regole di progetto relative alla CD "B" contenute nel § 7.4.4.3. Per le strutture prefabbricate a comportamento non dissipativo si devono applicare anche le regole generali contenute nel § 7.4.5.

Non-Dissipative Element Design (NDED)

$$M'_{vd} > M_{Ed}$$

M′_{yd}: Bending resistance in elastic status

M_{ed}: Design bending moment by elastic load combinations

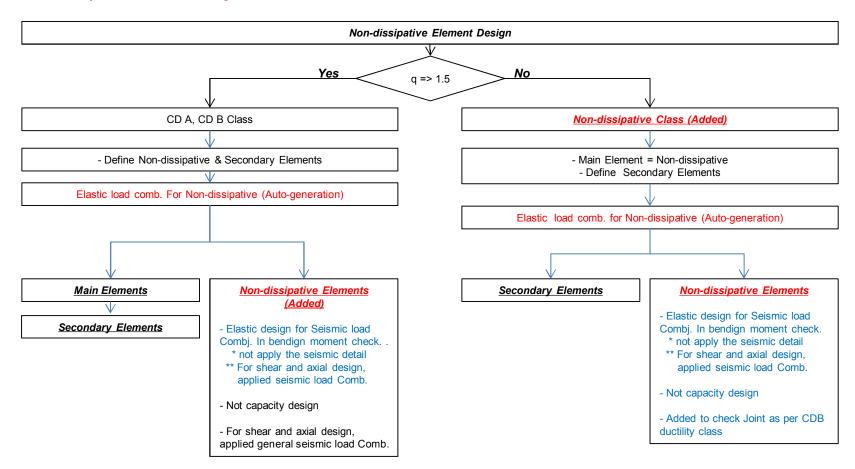
NTC18 7.2.2.

Buildings subject to seismic action, not equipped with appropriate insulation and / or dissipative devices, must be designed in accordance with one of the following structural behaviors:

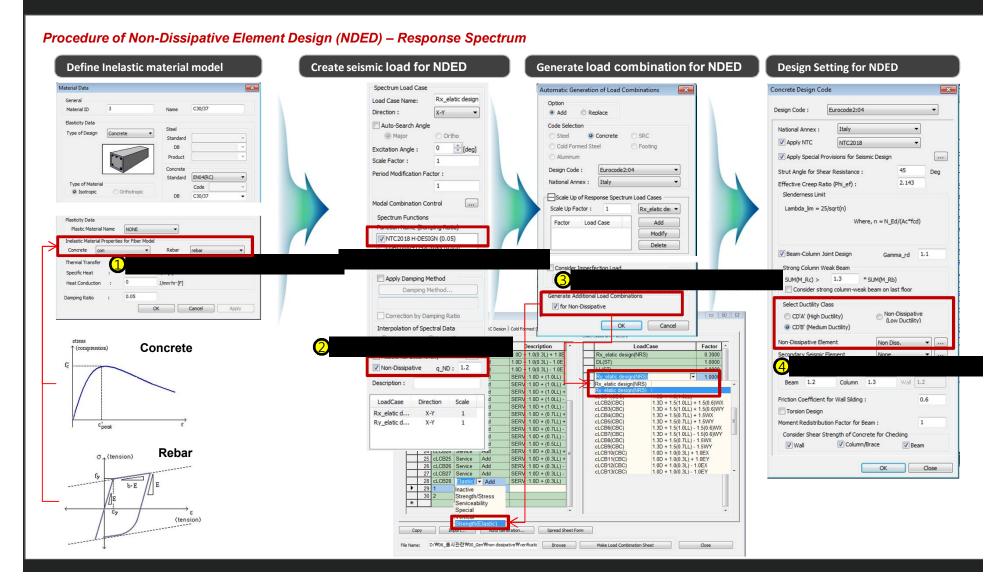
a) non dissipative structural behavior,

or

b) dissipative structural behavior.

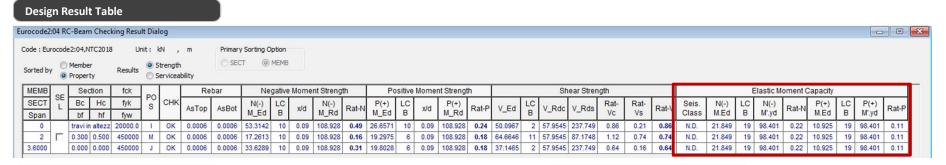

NTC18 7.4.1.

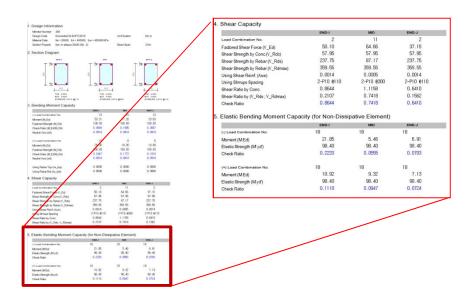
In the case of non-dissipative structural behavior, the capacity of the members must be evaluated in accordance with the rules set out in § 4.1, without any additional requirements, provided that in no section does the maximum moment of resistance in a substantially elastic field be exceeded, as defined in § 4.1.2.3.4.2. For beam-column Joint of structures with non-dissipative behavior, the design rules relating to CD "B" contained in § 7.4.4.3 must be applied. For prefabricated structures with non-dissipative behavior, the general rules contained in § 7.4.5 must also be applied.

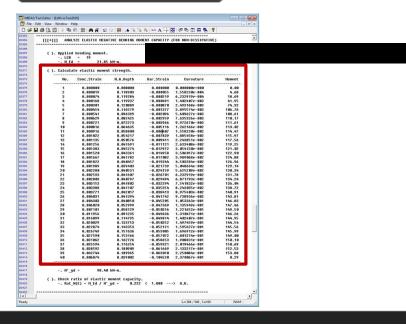

Flowchart of Non-dissipative Elements Design

^{**} This release version is supporting only a beam, columnn and wall member in code checking

Procedure of Non-Dissipative Element Design (NDED) - Static Seismic Load **Define Inelastic material model Create seismic load for NDED Generate load combination for NDED Design Setting for NDED** Concrete Design Code **Automatic Generation of Load Combinations** General Option C30/37 Design Code: Eurocode2:04 Add Modify National Annex: Italy Type of Design Concrete Standard ✓ Apply NTC NTC2018 Cold Formed Steel DB Footing No Name Description Type (3000) Aluminum Apply Special Provisions for Seismic Design Product Live Load (L) Design Code: Eurocode2:04 Strut Angle for Shear Resistance : 4 Ey Earthquake (E) 5 Ex_ND Earthquake for Elastic (EE) National Annex: Italy 2.143 Effective Creep Ratio (Phi ef) : Type of Material Code Isotropic Slenderness Limit C30/37 Scale Up of Response Spectrum Load Cases Lambda lim = 25/sort(n) Rx_elatic de: ▼ Plasticity Data Where, $n = N_Ed/(Ac*fcd)$ Load Case Add ad Case Name : Ex_ND ▼ [...] Modify Seismic Load Code: Eurocode-8(2004) Delete Rehar Beam-Column Joint Design Gamma rd 1.1 Recommended Strong Column Weak Beam SUM(M_Rc) > 1.3 * SUM(M Rb) Seismic Load Parameters Consider strong column-weak beam on last floor Generate Additional Load Combinations Ground Type: Select Ductility Class ▼ for Non-Dissipative OK Cancel Apply Spectrum Parameters - 0 X CD'A' (High Ductility) ○ Type2 O User Defined Type1 OK Cancel CD'B' (Medium Ductility) Soil Factor(S) Tb Tc Non-Dissipative Element Factor Concrete 1.2 0.15 1.0D - 1.0(0.3L) - 1.0E 1 0000 Ref. Peak Ground Acc. (AgR): 0.08 1.0(0.3L) - 1.0E :1.0D + (1.0LL) 1.0000 1.5 Behavior Factor (g): Beam 1.2 Column 1.3 Wall 1.2 1.0D + (1.0LL) 1.0D + (1.0LL) + Lower Bound Factor (b): 0.2 Friction Coefficient for Wall Silding: SERV : 1.0D + (1.0LL) -1.3D + 1.5(1.0LL) + 1.5(0.6)WX 1.3D + 1.5(1.0LL) + 1.5(0.6)WY 1.0D + (1.0LL) -Importance Factor (I) 1 1.0D + (0.7LL) + cLCB4(CBC 1.3D + 1.5(0.7LL) + 1.5WX cLCB5(CBC cLCB6(CBC 1.0D + (0.7LL) + 1.3D + 1.5(0.7LL) + 1.5WY Moment Redistribution Factor for Beam: 21 cLCB21 Service Add 1.0D + (0.7LL) -22 cLCB22 Service Add 1.0D + (0.7LL) cLCB7(CBC 1.3D + 1.5(1.0LL) - 1.5(0.6)WY Consider Shear Strength of Concrete for Checking cLCB8(CBC 1.3D + 1.5(0.7LL) - 1.5WX 23 cLCB23 Service Add 1.0D + (0.5LL) ▼ Column/Brace cLCB9(CBC) cLCB10(CBC) 1.3D + 1.5(0.7LL) - 1.5WY 1.0D + 1.0(0.3L) + 1.0EX **V** Beam 24 cLCB24 Senice Add 25 cLCB25 Senice Add 26 cLCB26 Service Add Rebar 1.0D + (0.3LL) + σ . (tension) 1.0D + (0.3LL) + cLCB11(CBC) 1.0D + 1.0(0.3L) + 1.0EY 1.0D + (0.3LL) -1.0D + 1.0(0.3L) - 1.0EX 1.0D + 1.0(0.3L) - 1.0EY OK Close 27 cLCB27 Service Add 28 cLCB28 Elastic ▼ Add SERV :1.0D + (0.3LL) b·E Inactive Strength/Stress Serviceability Special


File Name: D:₩06_출시관검₩00_Gen\mon dissipative\mon dissipative\monotone Browse Make Load Combination Sheet Close


(tension)


Design Result of Non--Dissipative Element Design (NDED): Supporting only Design Checking

Graphic Report

Detail Report

2. Enhancement of Stability coefficient table as per NTC 2018

About NTC18 chap. 7.3.1 – (this is to consider in wishlist)

Effetti delle non linearità geometriche

Le non linearità geometriche sono prese in conto attraverso il fattore θ che, in assenza di più accurate determinazioni, può essere definito come:

$$\theta = \frac{P \cdot d_{\text{Br}}}{V \cdot h}$$
 [7.3.3]

dove:

P è il carico verticale totale dovuto all'orizzontamento in esame e alla struttura ad esso sovrastante;

d_{ER} è lo spostamento orizzontale medio d'interpiano allo SLV, ottenuto come differenza tra lo spostamento orizzontale dell'orizzontamento considerato e lo spostamento orizzontale dell'orizzontamento immediatamente sottostante, entrambi valutati come indicato al § 7.3.3.3;

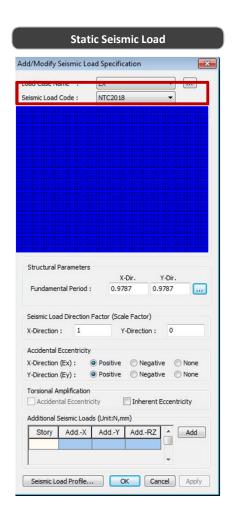
V è la forza orizzontale totale in corrispondenza dell'orizzontamento in esame, derivante dall'analisi lineare con fattore di

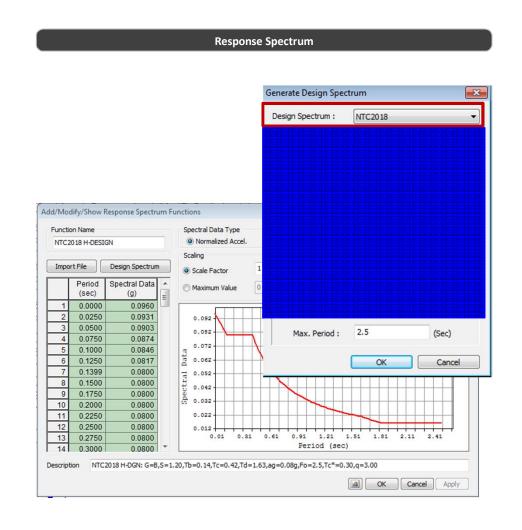
h è la distanza tra l'orizzontamento in esame e quello immediatamente sottostante.

Gli effetti delle non linearità geometriche:

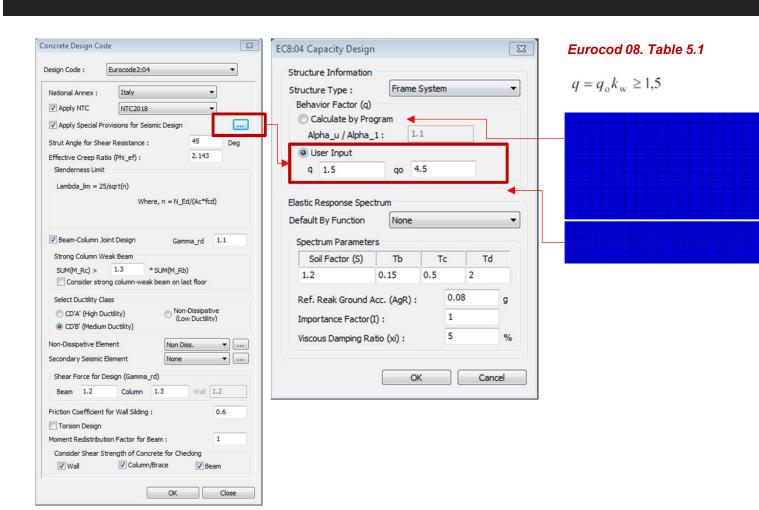
- possono essere trascurati, quando θ è minore di 0,1;
- possono essere presi in conto incrementando gli effetti dell'azione sismica orizzontale di un fattore pari a 1/(1-θ), quando θ
 è compreso tra 0,1 e 0,2;
- devono essere valutati attraverso un'analisi non lineare, quando θ è compreso tra 0,2 e 0,3.

Il fattore θ non può comunque superare il valore 0,3.


		Story Height	Vertical Load	Story Shear Force	Modified Story Drift	Beta	Stability Coefficient			P-Delta Incremental Factor
Load Case	Story	(m)	(kN)	(kN)	(m)	(Beta)	(Theta)	Allowable Limit	Remark	(ad)
Cd=1, le=1,	Scale Factor=	2.5								
SLVx(RS)	5F	3.2	26503.4572	646.7074	0.0186	1	0.2384	0.3	P-Delta Direct Analysis	
SLVx(RS)	4F	3.2	43667.3343	994.4165	0.0208	1	0.2859	0.3	P-Delta Direct Analysis	
SLVx(RS)	3F	3.2	60831.2115	1267.5691	0.0202	1	0.3257	0.3	Redesign	
SLVx(RS)	2F	13.2	88294.3753	1658.6257	0.0521	1	0.1802	0.3	P-Delta Increment	1.2662
SLVx(RS)	1F	3.2	105458.2525	1690.8036	0.003	1	0.0583	0.3	ОК	1

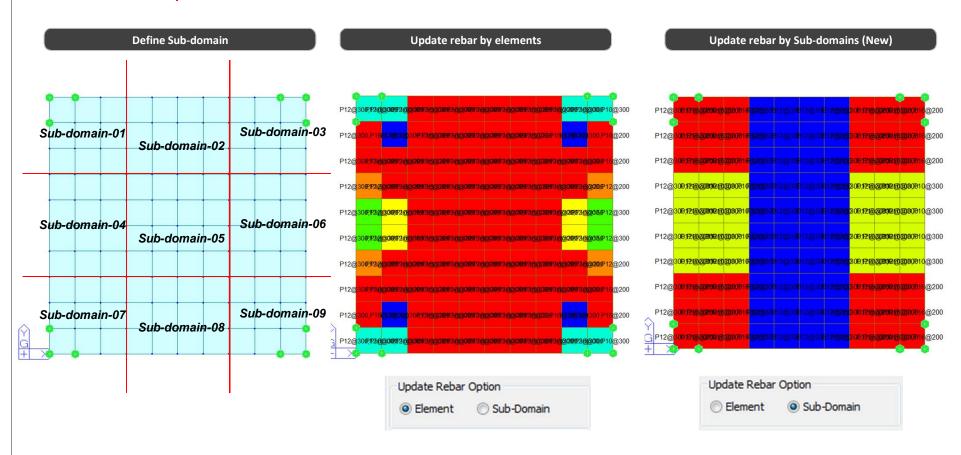

- If "Theta" is less than 0.1, "O.K" is printed
- If "Theta" exceeds 0.1 and is less than 0.2, "P-Delta Increment" is printed
- If "Theta" exceeds 0.2 and is less than 0.3, "P-Delta Direct Analysis" is printed
- If "Theta" exceeds 0.3, "Redesign" is printed

3. Added spectrum as per NTC 2018 in static seismic Load & response spectrum



4. Added user input for "qo" in RC design setting as per EC2

- Definition of "qo" by user
- Design considering "qo" for irregular structures



5. Added "Update Rebar Option" in shell/slab/wall design

• Update rebar arrangement by sub-domain & by elements

Added methods to input rebar information

6. Improvement of graphic report for column design

Printout shear design result for each direction in graphic report (RC column)

Midas Gen 2019 v2.2

5. Shear Force Capacity Check (End)

Applied Shear Force Design Shear Strength Shear Ratio Joint Shear Ratio Vu = 198.243 kN (Load Combination : 16) φVc+φVs = 276.331 + 842.734 = 1119.06 kN (As-H_req = 0.00053 m²/m, 2-P10 @30) Vu/φVn = 0.177 < 1.000 O.K Vhj/φVnj = 0.0000 / 0.00000 = 0.000 < 1.000 O.K

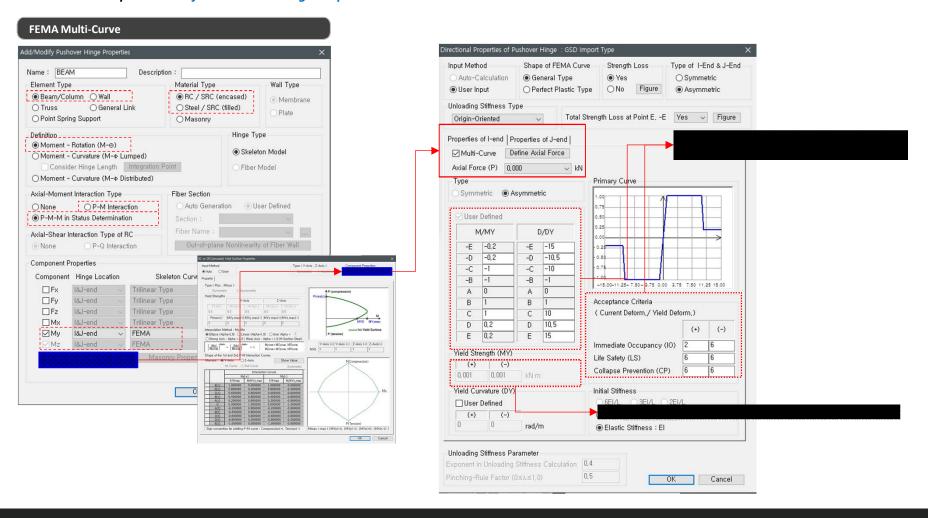
6. Shear Force Capacity Check (Middle)

Applied Shear Force Design Shear Strength Shear Ratio Vu = 198.243 kN (Load Combination : 16) φVc+φVs = 277.275 + 210.684 = 487.959 kN (As-H_req = 0.00053 m²/m, 2-P10 @120) Vu/φVn = 0.406 < 1.000 O.K

Midas Gen 2020 v1.1

3. Design for Shear

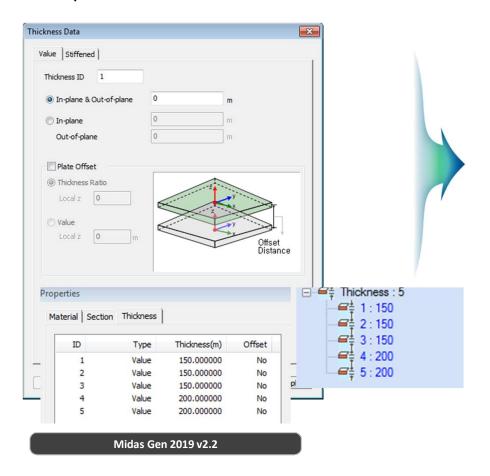
. Design for offear		
[END]	y: 3 (I)	z: 9(I)
Applied Shear Force (V_Ed) Shear Ratio (V_Ed/V_Rdc) Shear Ratio (V_Ed/V_Rds) Shear Ratio (V_Ed/V_Rdmax) Shear Ratio Asw-H_req	39639.6 N 39639.6 / 438445 = 0.090 39639.6 / 837475 = 0.047 39639.6 / 1716750 = 0.023 0.090 < 1.000 O.K 0.00393 mm²/m, 2-P10 @40	35434.7 N 35434.7 / 437307 = 0.081 35434.7 / 991141 = 0.036 35434.7 / 1741500 = 0.020 0.081 < 1.000 O.K 0.00393 mm²/m, 2-P10 @40
[MIDDLE]	y: 10 (1/2)	z: 10 (1/2)
Applied Shear Force (V_Ed) Shear Ratio (V_Ed/V_Rdc) Shear Ratio (V_Ed/V_Rds) Shear Ratio (V_Ed/V_Rdmax) Shear Ratio Asw-H_req	472545 N 472545 / 414399 = 1.140 472545 / 478557 = 0.987 472545 / 1716750 = 0.275 0.987 < 1.000 O.K 0.00222 mm²/m, 2-P10 @70	559460 N 559460 / 412915 = 1.355 559460 / 566366 = 0.988 559460 / 1741500 = 0.321 0.988 < 1.000 O.K 0.00222 mm²/m, 2-P10 @70
[JOINT]	y : (I)	z : (l)
Vjhd / Vjs Joint Ratio Ash.jnt	0.00000 / 0.00000 = 0.000 0.000 < 1.000 O.K 0.00000 mm², Not Use	0.00000 / 0.00000 = 0.000 0.000 < 1.000 O.K 0.00000 mm², Not Use

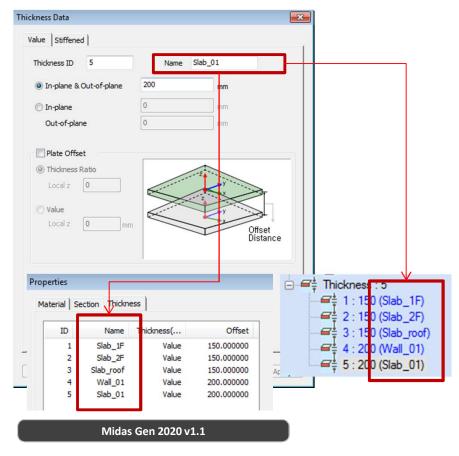


7. Specify Moment-Rotation hinge properties with multi curve

• Definition of hinge curve and yield strength depending on axial force in FEMA type

Pushover > Properties > Define Pushover Hinge Properties

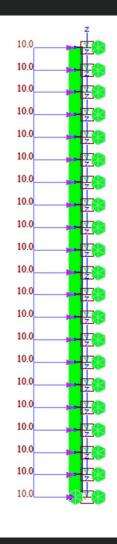


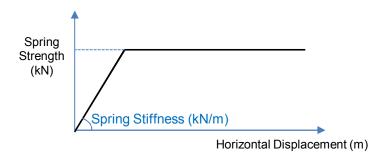


8. Added name box in thickness properties.

Usage classification for the same thickness

Properties > Section > Thickness



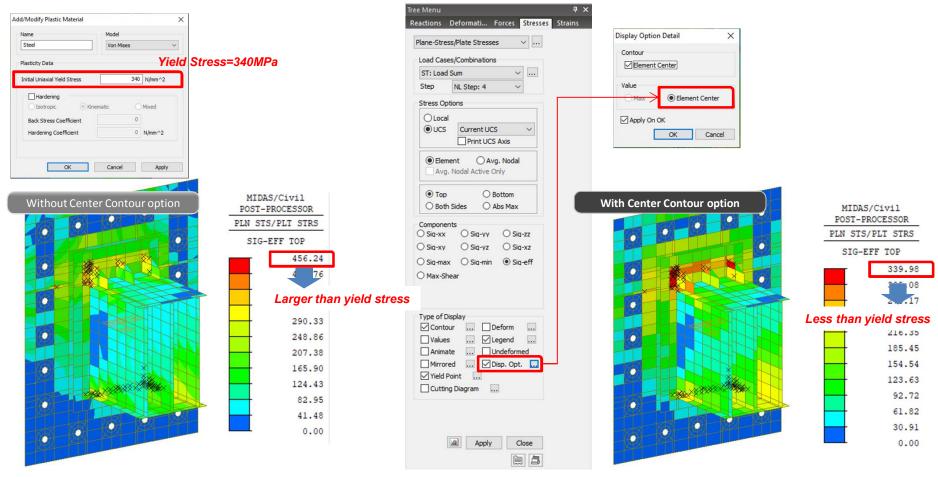

9. Bilinear type spring stiffness for surface spring support

- Bilinear spring type is added in the Surface Spring Support to simulate the strength limit of the soil. The strength limit should be defined by the user.
- Both Point Spring Support and Elastic Link are supported.
- Boundary > Spring Supports > Surface Spring

Horizontal Soil Stiffness(kN)

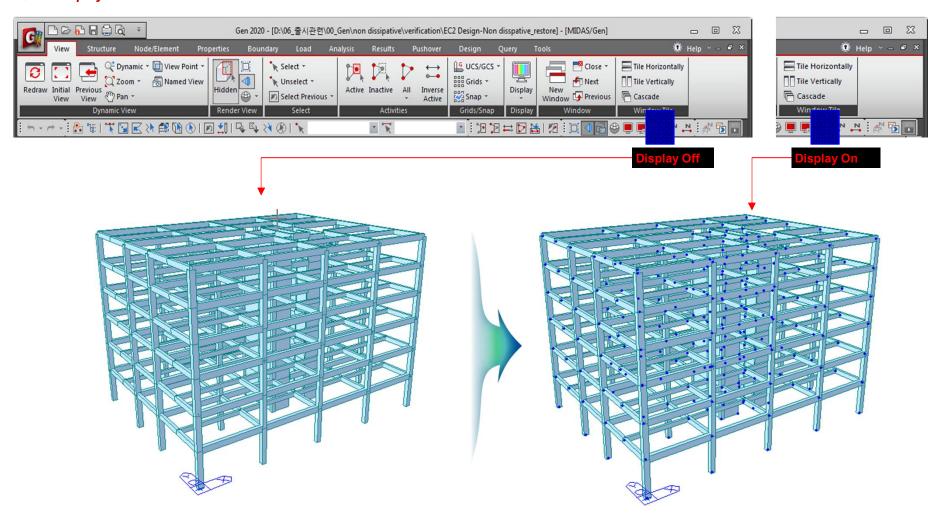
Spring Strength [kN] = Section Width [m] \times Element Length [m] \times PHU [kN/m²]

Surface Spring Support



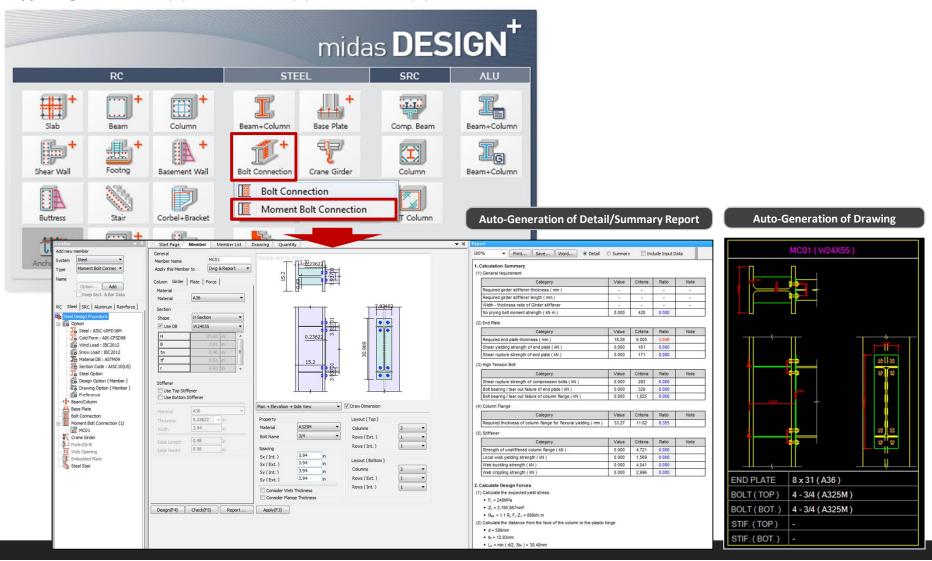
10. Force/Stress contouring based on center value of plate elements

- Stresses at the node are determined by the linear interpolation of Gauss points, which often leads to stress exceeding yield stress in the material nonlinear analysis.
- Plate stress contour can now be displayed using the value at the element center instead of element nodes. The center values will not exceed the yield stress.



11. Added "Node" icon in tool bar

Quick display on/off for Node


midas Design+

Design+

Gen 2020 v1.1 Release Note

1. Added moment bolt connection as per AISC

