

Release Note

FEA 2016 (v1.1) Release date: June 25, 2015

Table of Contents

Bug Fix List

- 01 Convergence Error with Combined Cracking-Shearing-Crushing model
- **02 Incorrect Self Weight of Pyramid Element**
- 03 Convergence Error in Nonlinear Analysis with Plate Offset

Pre-Processing

- **01** Fast Fourier Transform in Time-history Graph
- 02 New Material DB to Korean Standard
- 03 New Method of Defining Yield Stress–Strain Relations
- 04 Compression-only Point Spring for Soil Resistance
- **05 Time Dependent Material to Eurocode**
- 06 DTIME Parameter for User Supplied Material Subroutine

Post-Processing

01 Improvement about the von-Mises Stresses at Nodes 02 Summation of Crack Widths of Group of Elements

New Feature

Advanced Nonlinear and Detail Analysis System midas FEA

Time History Graph

(1) Fast Fourier Transform in Time-history Graph

• Vibrations of footbridges or building floors due to walking loads can be checked in the frequency domain using FFT so that resonance frequency can be found.

(2) New Material DB to Korean Standard

KS09(5) Create/Modify Material X3 KS09(5) SM400 KS09(5) SM400 Color Isotropic Interface KS09(5) SM490 KS09(5) SM400 Color Isotropic Interface KS09(5) SM490 KS09(5) SM400 Color Isotropic Interface KS09(5) SM490 KS09(5) SM490 Color Isotropic Interface KS09(5) SM490 KS09(5) SM490 Color Isotropic Interface KS09(5) SM490 KS09(5) SM490 Isotropic Interface Isotropic Isotr
KS09(S) SS400 KS09(S) SM400 KS09(S) SM490 KS09(S) SM490 KS09(S) SM490 KS09(S) SM490 KS09(S) SM490 KS09(S) SM490 KS09(S) SM490TMC KS09(S) SM520 KS09(S) SM520 KS09(S) SM570TMC KS09(S) SM570TMC KS09(S) SSC400 KS09(S) SSC400 KS09(S) SNFX400 KS09(S) SPSR400 KS09(S) SPSR400 KS09(S) SFK400 KS09(S) SFK400 KS09(S) SFK400 KS09(S) SFK400
KS09(S)_SDP1 KS09(S)_SDP2 KS09(S)_SDP3 KS09(S)_SCW410 KS09(S)_SCW480

• Meun: Analysis>Material Manager>Create/Modify Material>Material DB

Upgrade Contents

KSCE-LSD12(RC), KS09(S), KS08(S), KSCE-LSD12(S), KS10-Civil(S), KS08-Civil(S)

(3) New Method of Defining Yield Stress–Strain Relations

Menu: Analysis>Material

Upgrade Contents

• In the case of plastic materials, the constitutive model defines an elastic limit as a function of the equivalent plastic strain, which can be calculated based on the plastic strain obtained from the uni-axial tension test as follows. In the new version, the strain hardening can be defined based on the uni-axial plastic strain. The program will automatically convert it into the equivalent plastic strain.

- von Mises
$$\kappa = \lambda = \varepsilon_1^p$$
 - Tresca $\kappa = \frac{2}{\sqrt{3}}\lambda = \frac{2}{\sqrt{3}}\varepsilon_1^p$ - Rankine $\kappa = \sqrt{\frac{2}{3}}\lambda = \sqrt{\frac{2}{3}}\varepsilon_1^p$
 κ Equivalent plastic strain ε_1^p Uniaxial plastic strain

Pre-Works New Works Wiew Point Work Plane Datum Geometry	 The existing input method based on Equival from the Tree Menu. Menu: Tree menu>Function>Add Strain Har 	ent Plastic Strain can be accessed
Mesh Coordinate free Material Time-Dependent Material Time-Dependent Material Dimension BC Contact Construction Stage Heat of Hydration Stage Analysis Case Parametric Study Moving Load Analysis	Add General Function Add 3-Dimensional Function Add Time Dependent Function Add Temperature Dependent Function Add Truss Nonlinear Elastic Function Add Nonlinear Elastic Function Add Hardening Function Add Strain Hardening Function Add Total Strain Crack Function Add Heat Transfer Function Add Response Spectrum Function I	etion ent Function 1 0.9 0.9 0.8 0.7 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.
Pre-Works Post-Works	Add S-N Curve Function	(κ^0, f^0)

κ

(4) Compression-only Point Spring for Soil Resistance

Menu: Mesh>Element>Create Surface Spring>Point Spring

Upgrade Contents

• Point Spring with Compression-Only type can simulate the elastic behavior of soil resistance.

(5) Time Dependent Material to Eurocode

• Menu: Analysis>Time Dependent Material>Creep/Shrinkage, Compressive Strength

Upgrade Contents

• Prestressed structures can be analyzed with the effects of creep, shrinkage and compressive strength to Eurocode.

(6) DTIME Parameter for User Supplied Material Subroutine

!*************************************	******	
USER SUPPLIED MATERIAL SUBROUTINE		
SUBROUTINE USRMAT(EPSO, DEPS, EPSP, NS, USRSTA, NUS, IUSRIND,	INFM_STEP, COORD, SE, USRVAL, NUV, & NUI, SIG, STIFF, ID, DETJ)	FEA 2016 (v1.1)
IDEC\$ ATTRIBUTES DLLEXPORT::USRMAT	SUBROUTINE USRMAT (EPSO, DEPS, EPSP, NS, INFM_S USRSTA, NUS, IUSRIND, NUI, SIG, STIFFM, ID, DETJ, DT	TEP, COORD, SE, USRVAL, NUV, ME)
INTEGER, INTENT(IN) :: NS	I NUMBER OF STRESS COMPONENT	
INTEGER, INTENT(IN) :: INFM_STEP(5)	! STEP INFORMATION FOR STAGE, INCREMENT,	
ITERATION, ELEMENT, INTEGRATION POINT		
! INFM_STEP(1) : STAGE ID		
! INFM_STEP(2) : LOAD INCREMENTAL STEP ID		
! INFM_STEP(3) : ITERATION STEP ID		
! INFM_STEP(4) : ELEMENT ID		
! INFM_STEP(5) : INTEGRATION POINT ID		
INTEGER, INTENT(IN) :: ID	! MATERIAL ID OF CURRENT ELEMENT	
INTEGER, INTENT(IN) :: NUV	I NUMBER OF PARAMETERS	
INTEGER, INTENT(IN) :: NUS	I NUMBER OF INTERNAL STATE VARIABLES	
INTEGER, INTENT(IN) :: NUI	I NUMBER OF INTEGER INDICATOR VARIABLES	
REAL*8, INTENT(IN) :: DETJ	PETERMINENT VALUE AT CURRENT	
User Supplied Subroutine		

RETURN

END SUBROUTINE USRMAT

 SUBROUTINE USRMAT (EPSO, DEPS, EPSP, NS, INFM_STEP, COORD, SE, USRVAL, NUV, USRSTA, NUS, IUSRIND, NUI,
 SIG, STIFFM, ID, DETJ, DTIME), DTIME: Total Time Increment

Upgrade Contents

• The user can program the material which is dependent on time, e.g. visco-elastic model.

(1) Improvement about the von-Mises Stresses at Nodes

von-Mises stresses including Tresca and Rankine cannot exceed yield stress at nodal points as well as integration points.

(2) Summation of Crack Widths of Group of Elements

- Upgrade Contents
- In the total strain crack model, the crack with of single element depends on the element size. Summation of crack
 widths of group of elements is provided so that the crack with within certain distance can be checked regardless of
 mesh size.

(1) Convergence Error with Combined Cracking-Shearing-Crushing model

Problem

Convergence error in nonlinear analysis of interface elements with the 'Combined Cracking-Shearing-Crushing' material model. Analysis> Material > Interface

Correction

Improvement of convergence algorithm of CCSC material model.

(2) Incorrect Self Weight of Pyramid Element

Problem

Incorrect total weight with the model consisting of pyramid elements.

Correction

Corrected.

Advanced Nonlinear and Detail Analysis System midas FEA

(3) Convergence Error in Nonlinear Analysis with Plate Offset

Problem

Convergence error in nonlinear analysis with plate offset.

• Analysis > Property > Plate

Correction

Improved.