

Release Note

Release Date : September 2020

Product Ver. : Civil 2020 (v3.2)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and livil Enginee

Enhancements

- 1. Improvement of Bridge Assessment to CS 454: Crack Width of External/Unbonded Prestressing
- 2. Improvement of Bridge Assessment to CS 454: Torsional Reserve Factor Results
- 3. Improvement of Prestressed Girder Design to BS 5400: Longitudinal Shear
- 4. AASHTO LRFD 8th Design Standard Steel Section
- 5. Warping Normal Stress for Steel Composite Section Design to AASHTO LRFD
- 6. Bug fix list

1. Improvement of Bridge Assessment to CS 454: Crack Width of External/Unbonded Prestressing

 For the crack width calculation, prestressed structures containing external and/or unbonded prestressing must be treated as reinforced concrete sections in which the axial force and moment due to prestress is considered as an applied load. Axial force was not taken into account in the previous version. Now, crack width is calculated considering axial force as well as moment.

Rating > Bridge Rating Design > CS 454/19

Ge St Co SRC PSC CPG Ra R
Section for Assessment Check $\qquad \sim \ \dots$
Option
Add/Replace O Delete
Position
OI OJ €1%J
Class Category
O Class 1
O Class 2
Class 3
Tendon Type for Class 3
Type C : Pre-tensioned tendons distributed close to the tension faces
Apply Close
Class Category

	BCDE	F	G	HI	JK	(L	M	N	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ	AA	AB	ACA	DAE	AF AG
320 5.	Serviceability L	imit	State	e for a	Secti	on																			
321	Class 3 Limit Che	ck																(see	BD4	4/1	5 - 6	3.2)			
322	Check If S	tress	es are	With	in Clas	s 3 Li	mits																		
323	- Service limit l	oad	combi	natio	n :	SLS	51																		
324	- Service limit l	oad	combi	natio	n type :	MY	MY-MAX																		
325																									
326	* For Unbonded or External Tendons																	(see	BD 4	44/1	5 - 5	.8.8.	2 Eq 24)	
327					3a _{cr} ε,	n																			
328	CRw	=	1+	2(a _c ,	- c)	/(h	$(h - d_c)$			=			1.01			(mm)									
329																		(see	BD 4	44/1	5 - 5	.8.8.	2 Eq 25)	
330				[2	01.1/	,	-	117		M)			1												
331	ε _m	=	ε_1 ·	- -	80 _t n()	a –	$\frac{a_c}{1}$	(1	1 — ·)×	× 10 ⁻⁹			=		= 8		8.171E-03						
332				٤	$\left[\varepsilon_{s}A_{s}(h)\right]$		$-d_c) \prod_{i=1}^{n}$			М _g)	/	J	J												
333	εm	=	min(a	ε _m , ε ₁)												=		7.4	83E-	03					
334																									
335					4									2.											
336	As	=	2	(A _t 0	os-α ₁)	=		39	27.2	20		(mr	n~)											
337																									
338	CRw	lim	=			0.15	(mr	n)																	

Crack width calculation report

2. Improvement of Bridge Assessment to CS 454: Torsional Reserve Factor Results

• The method to determine Adequacy factor for torsion is improved as shown below.

Rating > Bridge Rating Design > CS 454/19

_														
	Element	Part	Rating Case	vt (kN/m²)	vtmin (kN/m²)	v (kN/m²)	vtu (kN/m²)	y1 (m)	vtu(y1/550) (kN/m²)	T (kN∙m)	Tu (kN∙m)	A	Check	
	1	I[1]	ULS_Mxx(Max)	665.4657	473.4272	-2866.011	6480.0000	4.8355	-	7080.6312	9477.6888	1.338	ОК	
	1	I[1]	ULS_Mxx(Min)	665.4657	473.4272	-2866.011	6480.0000	4.8355	-	-7080.631	9477.6888	1.338	ОК	
	1	I [1]	ULS_Myy(Max)	43.8766	473.4272	-	-	4.8355	-	-	-	10.79	ОК	
	1	[1]	ULS_Myy(Min)	0.0047	473.4272	-	-	4.8355	-	-	-	1015	OK	
	1	[1]	ULS_Mzz(Max)	559.3364	473.4272	-2869.134	6480.0000	4.8355	-	5951.4037	9477.6888	1.592	ОК	
	1	I [1]	ULS_Mzz(Min)	559.3367	473.4272	-2869.133	6480.0000	4.8355	-	-5951.406	9477.6888	1.592	ОК	
	1	J[2]	ULS_Fxx(Max)	190.4501	473.4272	-	-	4.8355	-	-	-	2.485	ОК	
	1	J[2]	ULS_Fxx(Min)	0.0047	473.4272	-	-	4.8355	-	-	-	1014	ОК	
	1	J[2]	ULS_Fyy(Max)	217.6501	473.4272	-	-	4.8355	-	-	-	2.175	ОК	
	1	J[2]	ULS_Fyy(Min)	221.8854	473.4272	-	-	4.8355	-	-	-	2.133	ОК	
	1	J[2]	ULS_Fzz(Max)	1.3240	473.4272	-	-	4.8355	-	-	-	357.5	ОК	
	1	J[2]	ULS_Fzz(Min)	248.9830	473.4272	-	-	4.8355	-	-	-	1.901	ОК	
	1	J[2]	ULS_Mxx(Max)	623.2512	473.4272	-2147.980	6480.0000	4.8355	-	6631.4638	9477.6888	1.429	ОК	
	1	J[2]	ULS_Mxx(Min)	623.2512	473.4272	-2259.093	6480.0000	4.8355	-	-6631.463	9477.6888	1.429	ОК	
	1	J[2]	ULS_Myy(Max)	190.4501	473.4272	-	-	4.8355	-	-	-	2.485	ОК	
	1	J[2]	ULS_Myy(Min)	0.0047	473.4272	-	-	4.8355	-	-	-	1014	ОК	
	1	J[2]	ULS_Mzz(Max)	614.1632	473.4272	-2122.454	6480.0000	4.8355	-	6534.7661	9477.6888	1.450	OK	
	1	J[2]	ULS_Mzz(Min)	615.2203	473.4272	-2278.913	6480.0000	4.8355	-	-6546.014	9477.6888			
	2	I[2]	ULS_Fxx(Max)	206.8457	473.4272	-	-	4.8355	-	-	-			
	2	I[2]	ULS_Fxx(Min)	1.3264	473.4272	-	-	4.8355	-	-	-			
	2	1[2]	ULS Fyy(Max)	217.6500	473.4272	-	-	4.8355	-	-	-			
[4 ⊁	\ Torsion	Reserv	e Factors /						<					

Torsion Reserve Factor Table

Adequacy Factor, A

If $v_t \leq v_{tmin}$,

$$A = v_{tmin} / v_t$$

If
$$v_t > v_{tmin}$$
,
 $A_1 = v_{tu}/(v + v_t)$
 $A_2 = T_u/T$
 $A = \min(A_1, A_2)$

Prestressed Box Girder

3. Improvement of Prestressed Girder Design to BS 5400: Longitudinal Shear

• Longitudinal shear force per unit length of a composite member is calculated at the interface of the precast unit and the in situ concrete.

		150 0	o nan
ongitu	dinal Shear		~
Optio	n		
٥	dd/Replace	ODele	ete
⊡ Both inte	n end parts(i & rface shear	j) have the	same
Shea	Plane Type (7423)	
	Surface Type 1	// 11210/	
0	Surface Type 2		
0	Ionolithic Cons	truction	
Inter	rface Shear		
Ls	285	mm	
Ae	4.909	mm²/mm	
Fy	250	N/mm²	
	۵r	nlv (Close
	_		

2 2´ In-situ 2 2´ concrete																
	7	Potentia	l she	ar pla	ne			L	ong	jitu	din	al s	hea	ar ch	eck	
			1	1-1							S	upp	oort	ed		
2			2	2-2				Not supported								
			Not supported													
2'					_ _											
	DEFG	HIJKL	. M N	0 P	QR	5 1	UV	W	X	Y Z	AA	ABAG	CAD	AEAF	AG	
288 5) Longi	tudinal Shear	Chape Force M		longth		_			1005			4 3 21				
289 • 10		shear Force, V ₁ ,	per unit	length		_			(see	53 54	00 - 7	.4.2.3)				
290 V 291 V	$I_1 = \frac{V^*}{I_{yy}}$	$\frac{5}{b_e}(b_e \cdot 1m)$	=		606.1	2	(kN/m)									
292																
300 • M	Maximum Longitudinal Shear Force															
301	-kf	,	- 1495.25 (kN/m)													
302	- ⁿ 1)cul	S	-		1450.2	<u> </u>	(KIN/111/									
303 (F	$u = v_{i}L$	+074 f	=	1079.9			(kN/m)									
304	- v _{12s}	1 O.TheJy			1075.5	Ŭ	(,									
305																
321 Ch	eck Longitudina	al Shear Force														
325	. =	606 12	(kN/m)	>			1079.90	0	(N/m)					ок		
326	1	000.12		_				· ·						0		
327																
328 • Ch	eck Minimum a	rea of Longitudi	nal Shea	r Reinfo	cement											
329	$\rho_{Is} \geq 0.159$	6														
330	, ta —	-														
331																
332 0	$= \frac{A_e *}{}$	1000 =		1.73	% ≥			0 1	5%					ок		
333	L _s *	1000						0.1								

Longitudinal Shear Check Report

4. AASHTO LRFD 8th Design Standard – Steel Section

- New AASHTO LRFD design standard can be applied to steel design. New type of report is provided.
- Steel Section (H or I section, box section (HSS), circular pipe (HSS), T or double angle, channel, single angle, rectangular bar, solid round)
- Design > Steel Design > AASHTO LRFD 17

	- -	Civi	l 2020 - [D:\My Doc	uments\14US\AASHTO 8th	update\Steel\Steel test R2 17 *] - [Member D	esign Detail Rep	ort AASHTO-L	RFD 2017		
View Structure AASHTO-LRFD17(US) Steel Design *	Node/Element Properties	Boundary Load A SSRC79 SRC Design Design	Analysis Results SHTO-LRFD17 Composite Design	PSC Pushover	Design Rating Query SNIP 2.05.03-84* Steel Ortho. Deck Design ~	1. Member In • Member	formation				
						2. Material (1) Material N (2) Fy (3) Es	lame : A36 : 36.0 : 29,0	00ksi 000ksi			7
HTO-LRFD17 Code Checkin de : AASHTO-LRFD17 rted by OProperty	g Result Dialog Unit : kips , in Change Update	Primary Sorting Option				× 3. Length (1) Ly (2) Lz (3) Lb (4) K	: 10.0 : 10.0 : 10.0 : 10.0	00ft 00ft 00ft			
CH MEMB SECT SE K COM SHR L	Section LC Material Fy	B Len Ly Cb	Ky B1y Kz B1z	B2y Pu Mu B2z pPn pMr	y Muz Vuy Vuz iy pMnz pVny pVnz	(4) Ky (5) Kz	: 1.00	00		4	
ок <u>4 2</u> 0.261 0.095 Г ок <u>5 2</u> Г	W16x67 A36 36.0000 W16x67	5 120.000 120.000 120.000 120.000 120.000 120.000 1 1115	1.000 1.000 1.000 1.000 1.000 1.000	1.000 0.83073 493.4 1.000 673.740 4206 1.000 0.83073 -774.	76 121.075 -7.2480 -11.803 25 1278.00 284.230 123.714 03 -186.93 -7.1912 -21.695	4. Section (1) Shape	: W1	6x67 (Rolled)			
0.405 0.175	A36 36.0000 W16x67	120.000 120.000 120.000 120.000 1572	1.000 1.000 1.000 1.000	1.000 673.740 4206 1.000 0.83073 602.3	25 1278.00 284.230 123.714 58 -198.94 3.11004 -11.803	(2) Section P	roperty				
0.379 0.095	A36 36.0000	4 120.000 120.000	1.000 1.000	1.000 673.740 4206	25 1278.00 284.230 123.714	As	A _{sy}	A _{sz}		Ybar	Zbar
	W16x67	5 120.000 120.000 0.981	1.000 1.000	1.000 -1.7122 601.1	18 197.881 2.48171 -21.695 09 1278 00 284 230 123 714	19.70in	² 11.34in ²	6.450in ²	2 - E	5.117in	8.165ir
11 2	W16x67	288.000 288.000	1.000 1.000	1.000 3.51440 -573.	32 193.564 -1.2760 11.1008	S.	S.,	Z		Z.	J
0.407 0.090	A36 36.0000	288.000 288.000	1.000 1.000	1.000 673.740 3544	10 1278.00 284.230 123.714	117in3	22 20in3			5 50in3	2 200ir
	A36 36.0000	1 288.000 288.000 1.000	1.000 1.001	1.000 -3.9889 1407	99 0.00000 0.00000 21.1946 94 1278.00 284.230 123.714	11711	25.2011	13011-		5.5011	2.39011
13 2	W16x67	288.000 288.000	1.000 1.000	1.000 3.51440 -573.	32 -193.56 1.27601 11.1008	ry	٢z	ly ly		z	l _{yz}
0.407 0.090	A36 36.0000	288.000 288.000	1.000 1.000	1.000 673.740 3544	10 1278.00 284.230 123.714	6.960in	2.460in	954in³		119in³	0.000in
K 0.605 0.171	A36 36 0000	1 288.000 288.000 1.000	1.000 1.000	1.000 -0.0254 0.000	94 1278.00 284.230 123.714			I	I		
v ¹⁵ ²	W16x67	120.000 120.000	1.000 1.000	1.000 0.83073 -774	03 -186.93 7.19119 21.6946	5. Check Axi	al Strength				
0.405 0.175	A36 36.0000	120.000 120.000	1.000 1.000	1.000 673.740 4206	25 1278.00 284.230 123.714		Category	Value	Criteria	Ratio	Note
< 16 2 0.396 0.175 □	16 2 W16x67 96 0.175 A36 36.0000 5 120.000 120.000 0.981 1.000 1.000 1.000 -1.7122 601.118 120.000 120.000 120.000 0.981 1.000 1.001 1.000 594.413 3888.09		18 197.881 -2.4817 21.6946 09 1278.00 284.230 123.714	Slenderness	Ratio	48.78	120	0.407	+		
Connect Model View	View Result Ratio	Result View Option				Compression	Ctronath (kin)	0.710	504	0.00120	+
Select All Unselect All	Re-calculation <<					Compression	i sueligui (kip)	0.710	394	0.00120	
Graphic Detail	Summary Close	Summary by LCB	Copy Table	1		Slenderness Ra	atio		0.41		
				-		Compression S	trenoth	0.00			

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50

Word Format Design Report

Design Result <u>Table</u>

5. Warping Normal Stress for Steel Composite Section Design to AASHTO LRFD

- Normal stress due to restrained warping can be introduced in the design of steel composite section to AASHTO LRFD 17.
- 7th dof option from the Section dialog box and warping normal stress option from the Design Parameter dialog box should be checked on.

 \times

Design > Composite Design > AASHTO LRFD 17

Composite Steel Girder Design Parameters	
Code : AASHTO-LRFD17 V Update by Code	
Strength Resistance Factor	
Resistance factor for yielding (Phi_y)	0.95
Resistance factor for fracture(Phi_u)	0.8
Resistance factor for axial comp.(Phi_c)	0.9
Resistance factor for flexure (Phi_f)	1
Resistance factor for shear(Phi_v)	1
Resistance factor for shear connector(Phi_sc)	0.85
Resistance factor for bearing(Phi_b)	1
Girder Type for Box/Tub Section	
Single Box Sections	
Option For Strength Limit State	
Appendix A6 for Negative Flexure Resistance in Web Compact / NonCompact Sections	
Mn<=1.3RhMy in Positive Flexure and Compact Sections(6.10.7	. 1. 2-3)
Post-buckling Tension-field Action for Shear Resistance(6.10.9.3	.2)
☐ Include Normal Stress due to Torsional Warping	
Design Parameters	
Strength Limit State-Flexure	
Strength Limit State-Shear	
Service Limit State	
Constructibility	
Fatigue Limit State	
Shear Connectors, Longitudinal Stiffeners, Bearing Stiffener	

	A	B	С	D	E	F	G	H		J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC
480		• Second-order elastic compression-flange Lateral bending stress (AASHTO LRFD Bridge, 2017, 6.10.1.6) i. Because of discretely braced flange. (for curved bridge) $f_{1} = \frac{M_{uz}}{S_{1}} = \frac{216.056}{206.923} = -1.044 \text{ ksi}$																											
481		i.	Beca	use (of dis	cret	ely b	raceo	l flan	ige.		(foi	r cun	ved b	ridge	e)													
482			f	_	M_{uz}	_	2	16.05	6	_			1.0/	1/1 kei															
483				-	S	-	20	06.92	23	-			-1.0-	++ Kal															
484																													
485			Beca	ause	of to	rsior	nal w	arpin	g																				
486			÷		M	w.				0.14	5 kei																		
487			Ч,w	-	I,	N	-			0.14	J Kai																		
488			in which :																										
489			M_b	:	Bi-m	nome	ent																						
490			l _w	:	War	ping	con	stant																					
491			w	1	War	ping	fund	tion	at st	ress	point	t																	
492																													
505		1	Che	ck fla	ange	nom	ninal	yield	ing																				
506			f_{bu}	+ f _l	=		-11.	619		≤		Φ	$\cdot \mathbf{R}_{\mathbf{h}}$	$\cdot F_{yc}$	=		6	8.895	5 ksi									0	ĸ
507			in w	hich	:																								
508				$\Phi_{\rm f}$	=		1.	000																					
509				R_h	=		0.	984																					
510																													
511		2	Che	ck fle	exura	l resi	istan	се																					
512			f _{bu}	, + f	/3	=		-10.	805		≤		Φ _f	• F _{nc}	=		5	4.060) ksi									0	ĸ
513			in w	hich	:																								
514				Φ _f	=		1.	000																					
515				F_{nc}	=		5	4.06	0 ksi																				

Composite Steel Girder Design Parameter

Design Report

6. Bug fix list

1. [Tendon re-tension] For the re-tension of tendon, relaxation losses are incorrectly calculated. When one tendon among multiple cables in a beam is re-tensioned, stresses in the other tendons are displayed as zero in the Tendon Loss table.

2. While using the standard vehicle from AS5100.2- Heavy Load Platform (Both HLP320 PR HLP400), program gives this error: "ERROR IN READ MODEL DATA : R_MOVE_AUST"

3. Analysis stopped with the error message below when the model included 7 dof of composite section, nonlinear point spring support and moving load analysis.

[WARNING] DISK SPACE IS NOT SUFFICIENT OR FILE ACCESS IS NOT ALLOWED BY ANTIVIRUS. PLEASE, CHECK DISK SPACE OR ANTIVIRUS PROGRAM OPTIONS

ERRORS ENCOUNTERED. MIDAS JOB TERMINATED. REFER TO .OUT FILE

- 4. Analysis stopped while moving load optimization was performed for the BD 37/01.
- 5. [Moving Load Analysis to Eurocode]
- Tracer Results were not matching with moving load analysis results. This was happening when there were two moving load cases with railway vehicles, one with Dynamic Allowance Factor and another without Dynamic Allowance Factor.
- Incorrect centrifugal forces from moving load tracer for the LM 71 train load. This was happening when the lanes were defined with the 'Lane Element' method.

6. Bug fix list

6. Analysis stopped with the following error message when point spring supports were used in the construction stage Non-linear analysis. This was happening when some components of point spring supports were fixed.

Spring Element Property is not Proper.

- 7. [Moving load analysis to CS 454]
 - While performing moving load optimization with ALL Model 1, the uniformly distributed load was
 not applied in the remaining area. Even in this release, the moving load optimization function does
 not take into account the remaining area for UDL which needs to be defined separately by the
 user.
 - When performing moving load optimization, the Moving Load Tracer crashed when trying to view the results for two different load cases at the time of the second load case.
 - When performing moving load optimization for the combined ALL Model 2 and SV 196, SV 196 was not applied when the lane width was smaller than 2.65 m which corresponded to vehicle width.
 - The difference in the results between Moving Load Tracer and converted static loads for the combined ALL Model 2 and HB: This was happening when HB load was defined using user-defined vehicle and the unit of HB was other than 30.

8. [Moving load analysis to Polish code] When there were more than one moving load case for optimization, the results of the second moving load case were wrong.

9. [Beam Section Temperature] The analysis results were wrong when Beam Section Temperature load was applied to Composite PSC section (Composite-I, Composite-T, Composite-PSC).

6. Bug fix list

10. [Inelastic time history analysis]

- Initial axial force of PM Multi-Curve hinge was not properly saved and thus the associated hinge reached failure status unexpectedly.
- Time history analysis was running very slow. The analysis was stuck at 13% and not moving ahead.

11. [GSD]

- The area of rebars shown on the corner of bottom-right side was incorrect for a huge section.
- Yield moment at axial force = 0 was shown as zero when hinge property was imported from midas GSD. This was happening when moment-curvature calculation was not converged for a very large size of section.

12. [Steel Composite Girder Design to Eurocode] When trying to define longitudinal stiffeners for the composite-general section, the program gives the following error message.

Can't Find DgnBaseManager.dgne

