

Release Note

Release Date : Jan. 04, 2022

Product Ver. : Civil 2022 (v1.2)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and Sivil Engineering

Enhancements

Enhancements in Civil 2022 (v1.2)

- 1. UK CS 454 Bridge Assessment for Steel Composite Girder with Longitudinal Stiffeners
- 2. Add New Type of Elastic Link: Rail Track Interaction Type

Enhancements in Civil 2022 (v1.1): Refer to Civil 2022 (v1.1) release note for details.

- 1. UK CS 454 Bridge Assessment for Steel Composite Girder
- 2. UK High-Speed Train Loads Database for Train Load Generator
- 3. Train Load Generator Time Forcing Function Improvement
- 4. AS 5100.5:17 Update for midas GSD
- 5. Italy NTC 2018 RS function
- 6. Auto-generation of Beam Section Temperature Loads (AASHTO, Eurocode, Australia)
- 7. Load Rating LRFR 2019 Update to AASHTO MBE 3rd edition
- 8. Traffic Load AK, N11 Update to Russia Standard
- 9. Longitudinal Stiffener Input Measured from Bottom of Steel Composite Girder

Civil 2022

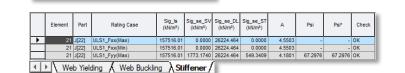
1. UK CS 454 Bridge Assessment for Steel Composite Girder with Longitudinal Stiffeners

- Steel composite girders with longitudinal stiffeners on the flange/web are now supported for the bridge assessment to UK CS 454.
- In Civil 2022 (v1.1), the assessment could only be performed for the beams without longitudinal stiffeners.
- Rating> Steel Bridge > CS 454/20

[
Section Stiffener	×	Section Stiffener	×
<u>d⊥d≥</u>	Stiffener Properties Name T Type Tee V	Stiffener Properties Name LS1 Type Flat	~
$\begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_1 \\ d_1 \\ d_2 \\ \vdots \\ d_1 \\ d_2 \\ \vdots \\ $	H 125.6 mm B 146.1 mm tw 6 mm tf 8.6 mm		
	Add Modify Delete	Add	Modify Delete
	T Tee Flat Flat		Flat
Stiffener		Stiffener	
Position Both Left	Right Reference of d Top OBottom	Position OBoth OLeft	fd 🔿 Top 💿 Bottom
N Left 2 N Rig	ht 2 N Bottom 3 N Top 0 A	N Left 0 🗘 N Right 1 N Bottom	0 • NTop 0 •
	d (mm) Stiffener 1862.5 T 800 T V V C d (mm) Stiffener C d (mm) Stiffener C d (mm) Stiffener C d (mm) Stiffener C d (mm) Stiffener V V V V V	C d (mm) Stiffener	Stiffener C d (mm) Stiffener
	OK Cancel		OK Cancel

1. UK CS 454 Bridge Assessment for Steel Composite Girder with Longitudinal Stiffeners

- The table results are provided separately for the beams with longitudinal stiffeners.
- Reserve factors, SLS checks, and longitudinal shear checks are provided separately on the result tables for flanges/webs with longitudinal stiffeners.


Rating> Steel Bridge > CS 454/20

4/20 AASHTO-LRFR19		Element	Part	Rating Case	Comp./ Tens.	Sig_yf (N/mm²)	Sig_f_SV 1 (N/mm²) (au_SV S V/mm²) (Sig_f_DL Tau_D N/mm²) (N/mm	L Sig_f_ST ²) (N/mm ²)	Tau_ST (N/mm²)	Α	Psi	Psi*	Check		
iteel Bridge * PSC Bridge *				JLS1_Fxx(Max)	-	0.0000			0.0000 0.00		0.0000	0.0000	-		NG		
Design Code for Assessment				JLS1_Fyy(Max) JLS1_Fyy(Min)	-	7.6313 7.6313		0.0000	6.5929 0.00 6.5929 0.00				1000000 · 1000000 ·				
				JLS1_Fzz(Max)	-		-28.5044	0.0000 -					1000000				
Assessment Design Result Tables 🔹 🔢 Flexural Reserve Factors		10	D [[10] L	JLS1_Fzz(Min)	-		-28.7521	0.0000 -		0 -17.8840			1000000				
Assessment Design Result Tables Flexural Reserve Factors				JLS1_Mxx(Max)	-					10.3728			1000000				
🔀 Shear Reserve Factors				JLS1_Mxx(Min)	-			0.0000 -		0 10.3728 0 -28.3888			1000000 · 1000000 ·				
				JLS1_Myy(Max) JLS1 Myy(Min)						-20.3000			1000000				
🔀 Combined Bending and Shear Reserve Factors				JLS1_Mzz(Max)		7.6313			6.5929 0.00				1000000				
SLS Stress Verification		10	0 [[10] U	JLS1_Mzz(Min)	-	7.6313	0.0000	0.0000	6.5929 0.00	0.0000	0.0000	-	1000000	1000000	OK		
Longitudinal Shear Verification		<u>}</u> ∖⊟a	ange (Stiffener /											_		
Reserve Factor/Verification Summary		Element	Part	Rating Case	Stiffener/ Flange	ĸ	Sig_y (kN/m²)	Sig_a_SV (kN/m²)	Tau_1_SV Sig_a_ (kN/m²) (kN/m	DL Tau_1_D (kN/m²)	L Sig_a_ST (kN/m²)	Tau_1_ST (kN/m²)	k_s	А	Psi	Psi*	Check
🔀 Steel Flange Reserve Factor(Beams with L. Stiffeners)		2	1 J[22] U	JLS1_Fxx(Max)	Flange	0.4543	324991.89	-0.0000	0.0000 26811.	589 0.000	0 -0.0000	0.0000	0.3576	4.1714		-	ок
📆 Web Panel Reserve Factor(Beams with L. Stiffeners)				JLS1_Fxx(Min)	Flange		324991.89	-0.0000	0.0000 26811.				0.3576	4.1714			ОК
web Paner Reserve Factor (beams with L. suffeners)				JLS1_Fyy(Max) JLS1_Fyy(Min)	Flange				1682.2383 26811. 1682.2383 26811.		0 640.3386 0 1137.5392				61.7907 58.2317	62.5606 59.5304	
🔀 Slab Reserve Factor(Beams with L. Stiffeners)				Stiffener /	-	1	II-	I	!		1	-	II				_
Reserve Factor Summary(Beams with L. Stiffeners)			inge A.														
SLS Stress Verification(Beams with L. Stiffeners)		Eleme	ent Pa	rt Rating Ca	ise	Sig_yw (kN/m²)	Sig_1e_S ¹ (kN/m ²)	/ Tau_S (kN/m ¹		Tau_DL (kN/m²)	Sig_1e_ST (kN/m²)	Tau_ST (kN/m²)			Psi	Psi*	Check
🔡 Longitudinal Shear Verification(Beams with L. Stiffeners)			40 5401	ULCA Envillent		245000.00	0.000	0.00	000 -20082.447	4047 5000	0.0000	0.00	00 219.5	275			
	୲୲┝		10 [[10]	ULS1_Fxx(Max) ULS1_Fxx(Min)		345000.00			000 -20082.447		0.0000		00 219.5		-	- 0	
Assessment Result Tables	4	►\ w		ding X Web Bu			<u> </u>	0.00			0.0000	0.000	213.0				

Rating Case

Web Yielding Web Buckling Stiffener

10 [[10] ULS1_Fxx(Max) 10 [[10] ULS1_Fxx(Min)

Additional result tabs on the assessment result tables

(kN/m²)

 345.0000
 1.0000
 1.2600
 2.8008
 -0.0000
 0.0000
 0.17756.295
 -2906.9565
 1388.7821
 -0.0000
 0.0000
 16.8415

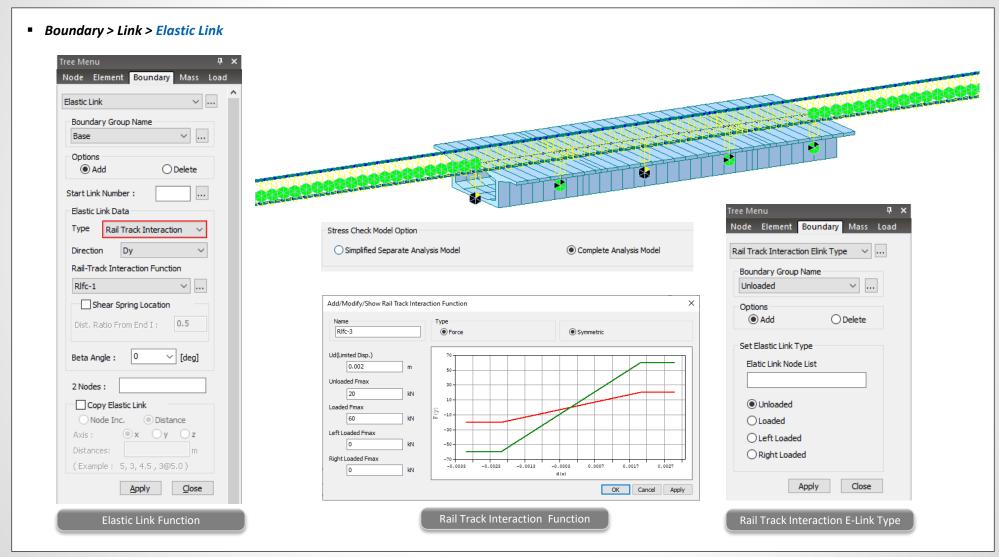
 345.0000
 1.0000
 1.2600
 2.8008
 -0.0000
 0.0000
 0.0000
 17756.295
 -2906.9565
 1388.7821
 -0.0000
 0.0000
 16.8415

(kN/m²) (kN/m²)

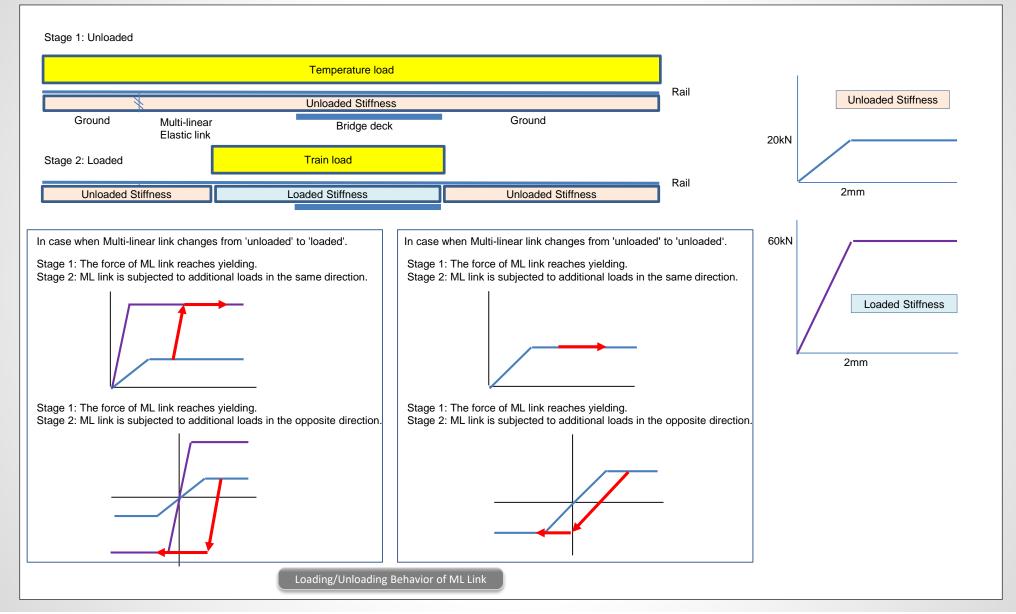
(kN/m²

(kN/m²) (kN/m²) (kN/m²)

1. UK CS 454 Bridge Assessment for Steel Composite Girder with Longitudinal Stiffeners


- The calculation procedure is provided in excel format.
- The excel report shows different contents depending on longitudinal stiffeners on a flange/web.

Rating> Steel Bridge > CS 454/20 1. Design Condition Design code Part(Node) 1. Design Condition Element CS454/20 8 1(8) Design code Element Part(Node) CS454/20 10 I(10) 2. Assessment factors 2. Assessment factors The following factors, as in CS 454, have been used to compare results of different The following factors, as in CS 454, have been used to compare results of different configurations and combinations. 3. Flexural Reserve Factors configurations and comb 7. Steel Flange Reserve Factor(Beams with L.Stiffeners) Adequacy factor: Assessme S* S_a* Load R_a* S_D* S_{ST}* Adequacy factor Α Ψ Ψ* Check $A = \frac{R_a^*}{S_a^*}$ Effect (kN.m) (kN.m) (kN.m) (kN.m) (kN.m) Case Flange R_a^* ULS1_Fxx(Max) Negative 7818.638 0.000 -393.340 0.000 -393.340 19.878 OK A = $\overline{S_{a}^{*}}$ Assessment Load $\sigma_{\rm vf}$ σ_{f,SV} τ_{sv} σω τοι OLST τ_{st} Ψ Ψ* Check ULS1_Fxx(Min) Negative 7818.638 0.000 -393.340 0.000 -393.340 19.878 OK Case Effect (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) Special Vehicle reserve factor v 4. Shear Reserve Factors ОК ОК ULS1 Fxx(Max) 290.043 0.000 0.000 23,309 0.000 0.000 0.000 12.443 -Comp. Special Vehicle rese $-(S_D^* + S_{ST}^*)$ Assessmer R_a* ОК S* ULS1 Fxx(Max) Tens. 281.385 0.000 0.000 -21.650 0.000 0.000 0.000 12.997 S_D^* S_{ST}^* S_a* ОК R_a* $-(S_{D}^{*})$ Ψ **ω*** А Check t S* W Stiffener (kN) (kN) (kN) (kN) (kN) ОК Cas Assessment Stiffener/ σ, σ_{a,SV} τ_{1,5V} $\sigma_{a,DL}$ $\tau_{1,DL}$ $\sigma_{a,ST}$ τ_{1,51} k, Α Ψ Ψ* Check ULS1_Fxx(Max k --ОК Case Flange (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) Sepcial Vehicle reserve factor v ULS1_Fxx(Min) 7720.152 0.000 201.277 0.000 201.277 38.356 ОК ULS1_Fxx(Max) Stiffener 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 OK ок Sepcial Vehicle reserved ОК ULS1_Fxx(Min) Stiffener 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5. Combined Bending and Shear Reserve Factors D* 0.000 0.000 OK 8. Web Panel Reserve Factor(Beams with L.Stiffeners) Assessmer Mp MDL Ma Msv Vsv VDL M_{ST} V_{ST} V_n V. Α Ψ Ψ* Check t (kN.m) (kN.m) (kN) (kN) (kN.m) (kN) (kN.m) (kN) (kN.m) (kN) Web Yielding Case Where: ULS1_Fxx(Max) 6769.383 6769.383 7720.152 7720.152 NG 0.000 0.000 0.058 OK Assessment σ.... 0.000 0.000 -322.941 Where: Ota SV Tor $\sigma_{1e,DL}$ Tou σ_{1eST} Тет Ψ* Check Α Ψ Case (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) R*_: the as ULS1_Fxx(Min) 6769.383 6769.383 7720.152 7720.152 0.000 0.000 -322.941 NG 0.000 0.000 0.058 ОК R*a : the as ULS1_Fxx(Max) 345.000 0.000 0.000 -20.082 1.018 0.000 0.000 219.537 ОК 0.000 ок 0.000 -322.941 NG 0.000 0.058 ^S 6. Longitudinal Shear Verification S*n the as ULS1_Fxx(Min) 345.000 0.000 0.000 -20.082 1.018 0.000 0.000 219.537 OK ULS1_Fyy(Max) 345.000 0.067 10.254 -20.082 1.018 -0.997 2.683 86.988 47.933 48.124 OK Assessmen 0.000 -322.941 NG 0.000 0.000 0.058 OK S*st the as-Pim α Pa q, q/q (q/q_r)_{limit} Check Web Buckling - t (kN/m) -322.941 -2754.934 1795.297 0.465 (kN) (kN) (kN/m) 1371.165 NG OK S* the as Case Assessment σ.... $\sigma_{1,sy}$ On sy Ø1 01 σ_b m τοι **σ**1 st Obse K1 Kb Kq A Ψ Ψ* Check ULS1_Fxx(Max) 0.032 125.000 82.642 0.248 0.065 1.000 NG 0.000 -322.941 NG 0.000 0.000 0.058 ОК Case (MPa) S*. the to ULS1_Fxx(Max) 345.000 1.000 1.260 2.801 0.000 0.000 0.000 -17.756 -2.907 1.389 0.000 0.000 OK 0.000 16.842 ULS1_Fxx(Min) 402.145 -322.941 NG -1664.865 823.672 0.304 ок ULS1_Fxx(Min) 345.000 1.000 1.260 2.801 0.000 0.000 0.000 -17.756 -2.907 1.389 0.000 0.000 0.000 OK 16 842 ULS1_Fyy(Max) 0.032 125.000 82.642 0.248 0.065 1.000 NG 402.145 -322.941 NG -1664.865 823.672 0.304 ОК UL3_Fyy(Max) 345.000 1.000 1.260 2.801 0.062 0.007 10.254 -17.756 -2.907 1.389 -0.916 -0.095 2.683 16.297 OK ULS1_Fyy(Min) 0.032 125.000 82.642 0.248 0.065 1.000 NG Stiffener 0.000 0.058 ОК 0.000 -322.941 NG 0.000 ULS1_Fzz(Max) 0.578 125.000 82.642 0.248 1.166 1.000 NG Assessment σĸ Ose SV Ose DL 0 ces 1174.635 -322.941 NG -2998.067 1470.545 0.501 ОК Α w Ψ* Check Case (MPa) (MPa) (MPa) (MPa) ULS1_Fzz(Min) 0.255 125.000 82.642 0.248 0.513 1.000 NG 0.000 ОК 0.000 -322.941 NG 0.000 0.058 UL\$1 Fxx(Max) 14.635 0.000 -14 735 0.000 0.860 NG ULS1 Mxx/Max) 0.351 125.000 82.642 0 248 0 708 1 000 NG ULS1 Exx(Min) 14.635 0.000 -14.735 0.000 0.860 NG ОК 0.000 -322.941 NG 0.000 0.000 0.058 ULS1 Mxx(Min) 0.077 125.000 82.642 0.248 0.156 NG 1.000 ULS1 Fyy(Max) 14,635 0.055 -14,735 -0.810 0.818 NG ULS1 Myy(Max) 0.077 125.000 82.642 0.248 0.155 1.000 NG ULS1_Myy(Min) 0.162 125,000 82.642 0.248 0.327 1.000 NG ULS1_Mzz(Max) 0.032 125.000 82.642 0.248 0.065 1.000 NG ULS1_Mzz(Min) 0.032 125.000 82.642 0.248 0.065 1.000 NG Assessment report for beams without longitudinal stiffeners Assessment report for beams with longitudinal stiffeners


Civil 2022

2. Add New Type of Elastic Link: Rail Track Interaction Type

- This new function enables the user to modify the hysteretic behavior of the multi-linear links generated by the Rail Track Analysis Model wizard.
- The Rail Track Interaction Type Link will be generated by the wizard for the 'Complete Analysis Model' type.

2. Add New Type of Elastic Link: Rail Track Interaction Type

3. Bug fix list found in Civil 2022 (v1.1)

- Tendon Primary and Secondary, Creep/Shrinkage secondary load cases were not visible in the Load Combination dialog box when the Construction Stage Analysis Control Data was not defined.
- [RC Design to AASHTO LRFD 17] 1D Plate Column Check was not performed. This was happening only with AASHTO LRFD 17.
- [Steel Composite Girder Rating to AASHTO-LRFR 19] In the Steel Bridge Load Rating Parameters dialog box, clicking OK gave inconsistent error messages.
- [Steel Composite Girder Design to AASHTO-LRFD 17] The values of the plate buckling coefficient, k, for the uniform normal stress were different between the detailed calculation sheet for an element and the longitudinal stiffeners sheet.
- [PSC rating to AASHTO LRFD] The rating factor was incorrect for the negative moment when the signs of the moments for dead load and live load were different.
- [PSC design to AASHTO LRFD]
 - The shear strength resisted by the concrete, Vc, was incorrect. The design report showed zero for Vc, although all values for calculating Vc were not zero.
 - The principal stresses were verified using all the load combinations for serviceability, although only the Service III load combination should be used.
- [Moving Load Analysis to AS] The results from the beam forces/moments and the moving load tracer were different for the user-defined vehicle.
- [PSC Girder Design to AS 5100] PSC design result tables showed different outputs compared to the selected item. When the user selected the flexural strength result in tables, the table for compressive stress got opened up.
- [Moving Load Analysis to BS] Pedestrian loads were scaled down by 1000 when converted to a static load case from the moving load tracer.