

Release Note

Release Date : July 2018

Product Ver. : Civil 2019 (v1.1)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and Sivil Engineering

Enhancements

Analysis & Design

1.	Traffic Load Models for Turkey	 3
2.	Moving Load Optimization for Australia	 5
3.	India IRS Bridge Rules: Railway Loads	 6
4.	Nonlinear Elastic Links for Pushover Analysis	 7
5.	GSD - Crack Width Calculation as per IRC 112: 2011	 8
6.	AASHTO LRFD 2016 update	 9
7.	Shell Design	 11

Pre & Post-Processing

1.	Energy Result Graph for Time History Analysis		24
2.	Strain Output for Material Nonlinear Analysis		28
3.	Multi-linear force-deformation function for Point Spring St	upport and Elastic Link	30
4.	Rail Track Analysis Report with the US Unit Setting		31
5.	Data Interface with GTS NX		32 -

6. Tekla Structure 2018 Interface

1. Traffic Load Models for Turkey

- Five Turkish live load models are implemented in midas Civil. KGM-45, H30-S24, H30-S24L, H20-S16, H20-S16L
- These vehicles can be found from the AASHTO LRFD / AASHTO Standard code.

1. Traffic Load Models for Turkey

Load/Moving Load Analysis Data > Vehicles

Define Standard Vehicular Load Standard Name Turkey Vehicular Load Properties Vehicular Load Name : H30-524 Vehicular Load Type :	Define Sta Standar Turkey Vehicula Vehicul	ndard Vehicular Load rd Name ar Load Properties lar Load Name : H20-S16 lar Load Type : H20-S16	
P1 P2 P3 P1 D2 ~ D3 Standard Vehicular Load No Load(MN) Spacing(m) W 1 60 4.25 Ps 0 2 240 4.25 Pm 0 db1 0 db1 0 W1 0 db1 0 db2 0 W W QK Cancel No Load(M) Spacing(m) Standard Vehicular Load, H30-S24 No Load(M) Spacing(m)	S24L S24L S24L S24L Image: S24L	P_{1} P_{1} P_{1} P_{2} P_{2} P_{3} P_{4} P_{5} Q_{1} Q_{1} Q_{2} Q_{2} Q_{3} Q_{4} Q_{5} Q_{5	ine Standard Vehicular Load
Standard Vehicula	r Load, H30-S24L		Standard Vehicular Load, H20-S16L

2. Moving Load Optimization for Australia

- Now, the moving load optimization function can be applied with the Australia code as well.
- Moving Load Optimization extends the capabilities of moving load analysis and helps to significantly simplify the evaluation of critical vehicle locations. The critical locations of vehicles can be identified in the transverse direction as well as longitudinal direction according to the code provision.
- Load > Moving Load > Traffic Line/Surface Lane > Moving Load Optimization
- Load > Moving Load > Moving Load Cases

Moving Load Optimizatio	n	—	Defi	ne Movi		
Lane Name : LO Traffic Lane Optimization Start a : Eccentri	Properties	a		d Case N cription Load Cas Moving L Accomp um of Lo		
Optimization Lane Lane Width Anal. Lane Offset Wheel Spacing Margin Eccentricity	11 3 1 2 0 0	m m m m m		3 ptimizati lin. Vehio		
Eccentridity 0 m Vehicular Load Distribution □ Load Cas □ Lane Element ○ Cross Beam ○ Cross Beam						
 ○ Forward ○ Back ○ Selection by ○ 2 Points ○ Pickin ○, 0, 0 ○, 0, 0 ○ Operations ○ Add Inser 	ward i i i i i i i i i i i i i i i i i i i) Both mber m slete		Assignm Selected Scale Fa Vehicle VL:S16		
No Elem Ec 1 11 1 2 12 13 OK Cance	ccen. S (m) S 0 0 0	Start		Add OK		
Traffic Line Land	Ontimi	zation —				

Define Moving Load Ca	se				×				
Load Case Name :	MC)							
Description :					Ī.				
Load Case for Permit	Vehi	de	_						
Moving Load Optimization									
Accompanying Lane Factor									
Num of Loaded Lanes Scale Factor									
	_	1							
2	_	0.8							
S or more		0.4							
Optimization				_					
Min. Vehicle Distance		1		m					
Load Case Data									
Loaded Lane	LO		_	•	1				
Min. Number of Vehicle	2		0						
Max. Number of Vehic	le		4						
Loading Effect									
Combined	0	Inde	pende	ent					
Assignment Vehicle	_								
Selected Vehicle	VL	:S160	00	-					
Scale Factor	1.0	0							
Vehicle class		Scal							
VL:S1600		1							
Add Modify Delete									
QK <u>C</u> ancel <u>Apply</u>									
Moving L	oad	l Ca	se						

3. India IRS Bridge Rules: Railway Loads

All the applicable railway loads could now directly be applied to any structure. The tractive and braking load of locomotive as well as wagon would be automatically considered.

4. Nonlinear Elastic Links for Pushover Analysis

- Nonlinear behavior of the elastic links, i.e. comp.-only, tens.-only, multi-linear can be taken into account in the pushover analysis.
- Link forces imported from static analysis or construction stage analysis cannot be specified as initial loads for pushover analysis.

nover Global Control				
eometric Nonlinearity Type None Carge Displacements itial Load Perform Nonlinear Static Analysis for Initial Load Import Static Analysis / Construction Stage Analysis Results - When the boundary conditions are different between initial load and pushover load - When the element forces in the last construction stage are used as an initial load oad Case LDC2 Scale Factor 1 Static Load Case Scale	Nonlinear Analysis Option Image: Permit Convergence Failure Max. Number of Substeps : Maximum Iteration Convergence Criteria Image: Displacement Norm Force Norm Energy Norm Analysis Stop Shear Component Yield Image: Description	10 10 (m) 0.001 0.001		
Modify Delete ushover Hinge Data Option Image: Assign Hinge Properties to Member only for Moment-Rotation Beam/Column Default Stiffness Reduction Ratio of Skeleton Curve Trilinear / Slip Trilinear Type Image: Symmetric Image: Ima	Axial Component Collapse/Buddi Beam/Column Trus Support Uplifting/Collapse Uplifting Colta Point Spring Support & Elastic Link : Non ta for Auto-Calculation of Strength eference Location only for Distributed Hinge I-end	 Point Spring Support : CompOr Apply the nonlinear properti Support for pushover analys Assumed as linear spring sup Note. In case when pushov Spring Support, the pushover analysis. Elastic Link : CompOnly, Tens. Apply the nonlinear properti pushover analysis Assumed as linear Elastic Link 	Aly, TensOnly, Multilinear Type es defined in Point Spring is opport for pushover analysis er hinges are assigned to Point er hinge properties will be used for Only, Multilinear Type es defined in Elastic Link for k for pushover analysis	Bi-line Elasti repres soil re
Bilinear / Slip Bilinear Type Image: Symmetric 01 0.05	Calc. Yield Surface of Beam considering BL		OK Can	
· · · · · · · · · · · · · · · · · · ·				

Civil 2019 Analysis & Design

5. GSD - Crack Width Calculation as per IRC 112: 2011

- For any irregular section, both elastic and cracked-elastic crack width can be computed as per IRC 112: 2011 code.
- Excel report of the stress and crack width calculation can be obtained.

6. AASHTO LRFD 2016 update

Load Combination

	DC									Us	e One o	of These	at a Ti	me
	DD													
	DW													
	EH													
	EV	LL												
	ES	IM												
	EL	CE												
Load	PS	BR												
Combination	CR	PL												
Limit State	SH	LS	WA	WS	WL	FR	TU	1G	SE	EQ	BL	IC	CT	CV
Strength I	γ_p	1.75	1.00	-	_	1.00	0.50/1.20	ΎTG	ΎSE	—	—	_	—	-
(unless noted)														
Strength II	γp	1.35	1.00	—	—	1.00	0.50/1.20	ΎTG	ΎSE	—	—	—	—	—
Strength III	γ_p	—	1.00	<u>1.0</u>	—	1.00	0.50/1.20	ΥTG	ΎSE	—	—	_	—	-
				1.40										
Strength IV	γρ	_	1.00	—	—	1.00	0.50/1.20	—	—	—	—	—	_	—
Strength V	γ_p	1.35	1.00	<u>1.0</u> 0.40	1.00	1.00	0.50/1.20	ΎTG	Ϋ́SE	_	_		—	-
Extreme Event I	1.0	γeq	1.00	—	_	1.00	—	_	_	1.00	_		-	—
Extreme Event II	γ_p	0.50	1.00	—	_	1.00	_	_	—	_	1.00	1.00	1.00	1.00
Service I	1.00	1.00	1.00	<u>1.0</u> 0.30	1.00	1.00	1.00/1.20	ΎTG	ŶSE	_	_	_	_	—
Service II	1.00	1.30	1.00	—	_	1.00	1.00/1.20	_					_	—
Service III	1.00	YLL	1.00	_		1.00	1.00/1.20	ΥTG	ΎSE				_	—
Service IV	1.00		1.00	1.0		1.00	1.00/1.20	_	1.00	_	_		_	_
				0.70										
Fatigue I—	_	1.50	_	—	—		_					_	_	_
LL, IM & CE														
only														
Fatigue II—	_	0.75					_	_	_			_		_
LL, IM & CE														
only			L	l	l							L		

Automatic Generation of Load Combinations							
Option Add Replace Add Envelope							
Code Selection							
Design Code : AASHTO-LRFD16 •							
Manipulation of Construction Stage Load Case							
ST : Static Load Case CS : Construction Stage							
Load Medifier - 1							
Load Factors for Permanent Loads (Yp)							
Load Factor for Settlement :							
Structural Plate Box Structures(Metal Box Culverts)							
Live Load Factor for Service III : 0.8							
Condition for Temperature							
Deformation Check In All Other Effects							
OK Cancel							
Load Combinations Dialog							

• Load factors of WS for Strength III, Strength V, Service I, Service IV are changed from 1.4 to 1.0, 0.4 to 1.0, 0.3 to 1.0, 0.7 to 1.0, respectively.

Load factor of permanent effects for Extreme Event I is changed from γ_p to 1.0. AASHTO-LRFD 2012 used a value for γ_p greater than 1.0.

6. AASHTO LRFD 2016 update

Resistance Factor

• ϵ_{cl} : compression-controlled strain limit in the extreme tension steel

• $\boldsymbol{\epsilon}_{tt}$: tension-controlled strain limit in the extreme tension steel

Civil 2019 Analysis & Design

7. Shell Design

- The design of reinforcement concrete shells as per Annex LL of EN 1992-2 is implemented.
- Shell design considers three membrane forces, two flexural moments, twisting moment and two transverse shear forces.
- This design feature can be applied to concrete shell structure, abutment walls / wing walls, under ground structures.

MIDAS

7. Shell Design

Shell Flexural Design/Checking

Result for Rebar					
Shell Flexural Design 🔹 📖					
Load Cases/Combinations					
ALL COMBINATION 🔻					
Design Force					
element					
element					
Display Option					
🔘 Top 🛛 🔘 Bottom 🔘 Both					
Rebar (Dir. 1) Rebar (Dir. 2)					
Concrete					
Type of Display					
Values					

The followings can be displayed.

- 1. Membrane Axial Force
- 2. Membrane Shear Force
- 3. Rebar Stress
- 4. As_req
- (Required reinforcement area)
- 5. Rho_req (Required reinforcement ratio)
- 6. Rebar Arrangement

Result for Concrete						
Shell Flexural Design						
Load Cases/Combinations						
Design Force						
Element						
Element Width I m						
Display Option						
🔘 Top 🛛 🔘 Bottom 🔘 Both						
 Rebar (Dir. 1) Rebar (Dir. 2) Concrete 						
Type of Display Contour Vegend Values						

The followings can be displayed.

- 1. Membrane Axial Force
- 2. Membrane Shear Force
- 3. Principal Compressive Stress of Concrete

Results Table

Elom	Node	005	CHK		Di	r-1			Di	r-2			Co	nc		
Elem		nouc	PUS	100	CHK	Lcom	ftd (kN/m²)	ftd (kN/m²)	Ratio	Lcom	ftd (kN/m²)	ftd (kN/m²)	Ratio	Lcom	Sig_cd (kN/m²)	sigcdlim (kN/m²)
2	2	TOP	NG	LC3-st	5720.27	808.63	7.07	LC3-st	1155.22	743.06	1.55	LC3-st	28.70	4000.00	0.01	
2	2	BOT	NG	LC3-st	139.52	771.16	0.18	LC3-st	28.18	721.21	0.04	LC3-st	5855.31	4000.00	1.46	
2	3	TOP	NG	LC3-st	5714.92	808.63	7.07	LC3-st	1148.37	743.06	1.55	LC3-st	13.97	4000.00	0.00	
2	3	BOT	NG	LC3-st	139.39	771.16	0.18	LC3-st	28.01	721.21	0.04	LC3-st	5856.79	4000.00	1.46	
2	7	TOP	NG	LC3-st	2992.12	808.63	3.70	LC3-st	524.62	743.06	0.71	LC3-st	69.89	4000.00	0.02	
2	7	BOT	OK	LC3-st	72.98	771.16	0.09	LC3-st	12.80	721.21	0.02	LC3-st	3040.47	4000.00	0.76	
2	8	TOP	NG	LC3-st	3092.07	808.63	3.82	LC3-st	630.71	743.06	0.85	LC3-st	27.22	4000.00	0.01	
2	8	BOT	OK	LC3-st	75.42	771.16	0.10	LC3-st	15.38	721.21	0.02	LC3-st	3163.41	4000.00	0.79	

Civil 2019 Analysis & Design

7. Shell Design

ell Design	
Shell Shear Checking	
Result for Shear	1

The followings can be displayed.

3. Resistance Ratio

1. V_Edo 2. Shear Resistance for Concrete

Shell Shear Che	dina 👻
Sheli Shear Che	
-Load Cases/Co	ombinations
ALL COMBINA	TION 🔻
Design Force	
 Element 	🔘 Avg. Nodal
Element	♥ Width 1 m
Display Option	
Type of Displa	зу
Contour	🔽 Legend 🛛
Values	
V_Edo	
🔘 Shear Resi	stance
Resistance	Ratio

Results Table

	Flom	Cub Demain	1.000	Nada	CHK		Shear	Force	Resistance				
	Liem	Sub-Domain	LCOM	Node	UNK	V_Edx (kN/m)	V_Edy (kN/m)	V_Edo (kN/m)	phi_o	V_Rdc (kN/m)	V_Rds (kN/m)	Asw/s (m^2/m)	
$\mathbf{+}$	2	L-B	LC2-ser	7	ОК	-44.70	1.76	44.73	-0.04	117.78	0.00	0.00	
	2	L-B	LC2-ser	8	ОК	-43.10	1.76	43.14	-0.04	117.78	0.00	0.00	
	2	L-B	LC2-ser	3	ОК	-43.10	0.00	43.10	-0.00	126.37	0.00	0.00	
	2	L-B	LC2-ser	2	ОК	-44.70	0.00	44.70	-0.00	126.37	0.00	0.00	

Design Concept of Shell Design

- Shell or plate element subjected to membrane forces Nx,Ny,Nxy + flexural forces Mx,My,Mxy
- Resisted by resultant tensile forces of reinforcement + resultant compressive forces of concrete

Procedure of Shell Design

Crack Checking

$$\Phi = \alpha \frac{J_2}{f_{\rm cm}^2} + \lambda \frac{\sqrt{J_2}}{f_{\rm cm}} + \beta \frac{I_1}{f_{\rm cm}} - 1 \le 0 \quad \Rightarrow Uncracked, \quad If \, \Phi > 0.0, \, Cracked$$

where:

$$J_{2} = \frac{1}{6} [(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}] \qquad \lambda = c_{1} \cos \left[\frac{1}{3} \operatorname{ar} \cos(C_{2} \cos 3\theta)\right] \quad \text{for}$$

$$J_{3} = (\sigma_{1} - \sigma_{m}) (\sigma_{2} - \sigma_{m}) (\sigma_{3} - \sigma_{m}) \qquad \lambda = c_{1} \cos \left[\frac{\pi}{3} - \frac{1}{3} \operatorname{ar} \cos(-C_{2} \cos 3\theta)\right] \quad \text{for}$$

$$I_{1} = \sigma_{1} + \sigma_{2} + \sigma_{3} \qquad \beta = \frac{1}{3,7k^{1,1}}$$

$$\sigma_{m} = (\sigma_{1} + \sigma_{2} + \sigma_{3})/3 \qquad \beta = \frac{1}{3,7k^{1,1}}$$

$$\alpha = \frac{1}{9k^{1,4}} \qquad \cos 3\theta = \frac{3\sqrt{3}}{2} \frac{J_{3}}{J_{2}^{3/2}}$$

$$\sigma 1 = Max. [\sigma x, \sigma y] = Max. [Fxx, Fyy] \qquad c_{1} = \frac{1}{0,7k^{0.9}}$$

$$\sigma 2 = Min. [\sigma x, \sigma y] = Min. [Fxx, Fyy] \qquad c_{2} = 1 - 6,8 (k - 0,07)^{2}$$

Plate Stress (UL : UCS) Table

	Elem	Load	Node	Fxx (kN/m)	Fyy (kN/m)	Fxy (kN/m)	Fmax (kN/m)	Fmin (kN/m)	
\rightarrow	218	cLCB1	Cent	-17.633	-1.408	-0.083	-1.408	-17.634	
	218	cLCB1	186	-18.198	-0.873	-0.319	-0.867	-18.203	
	218	cLCB1	238	-17.152	-0.873	-0.275	-0.869	-17.157	
	218	cLCB1	185	-17.152	-1.860	0.152	-1.859	-17.154	
	218	cLCB1	150	-18.198	-1.860	0.108	-1.859	-18.198	
4	Plate Force(L) Plate Force(G) Plate Force(UL:Local) Plate Force(UL:UCS) F								

Calculate Membrane Force

• The geometry of sandwich element has to be known to compute the membrane forces (Nxk, Nyk, Nxyk).

$$N_{xt} = N_x \frac{a_b}{a} - \frac{M_x}{a} \qquad N_{xb} = N_x \frac{a_t}{a} + \frac{M_x}{a}$$

$$N_{yt} = N_y \frac{a_b}{a} - \frac{M_y}{a} \qquad N_{yb} = N_y \frac{a_t}{a} + \frac{M_y}{a}$$

$$N_{xyt} = N_{xy} \frac{a_b}{a} - \frac{M_{xy}}{a} \qquad N_{xyb} = N_{xy} \frac{a_t}{a} + \frac{M_{xy}}{a}$$

Procedure of Shell Design

Calculation of Sandwich Thickness for Optimal Design - 1

Procedure of Shell Design

Calculation of Sandwich Thickness for Optimal Design - 2

Procedure of Shell Design

Calculation of Membrane Force in tension layer and Required Rebar Area

Procedure of Shell Design

Calculate Force of reinforcement(Tension Layer) and concrete(Compression Layer)

$$|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xak} < -|\mathbf{N}_{xyk}|, \mathbf{N}_{yk} \geq -|\mathbf{N}_{xyk}|, \mathbf{N}_{xk} \geq -|\mathbf{N}_{xyk}|, \mathbf{N}_{xk} \geq -|\mathbf{N}_{xky}|$$

$$|\mathbf{N}_{xak} = 0$$

$$|\alpha_{k} = \arctan\left(\frac{|\mathbf{N}_{xyk}|}{-\mathbf{N}_{xk}}\right)$$

$$|\mathbf{N}_{yak} = N_{xk} + |\mathbf{N}_{xyk}| \cot \alpha_{k} = N_{xk} + |\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{yak} = N_{yk} + |\mathbf{N}_{xyk}| \tan \alpha_{k} = N_{yk} + |\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}| (\tan \alpha_{k} + \cot \alpha_{k})$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}|, \mathbf{N}_{yk} < -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = -|\mathbf{N}_{xyk}|, \mathbf{N}_{yk} < -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = -|\mathbf{N}_{xyk}|, \mathbf{N}_{xk} \geq -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}|, \mathbf{N}_{xk} < -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = -|\mathbf{N}_{xyk}|, \mathbf{N}_{xk} \geq -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}|, \mathbf{N}_{xk} \geq -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}|, \mathbf{N}_{xk} \geq -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}|, \mathbf{N}_{xk} \geq -|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}| (\tan \alpha_{k} + \cot \alpha_{k}) = 2|\mathbf{N}_{xyk}|$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}| (\tan \alpha_{k} + \cot \alpha_{k}) = 0$$

$$|\mathbf{N}_{xk} = \frac{1}{2}(\mathbf{N}_{xk} + \mathbf{N}_{yk}) - \frac{1}{2}\sqrt{(\mathbf{N}_{xk} - \mathbf{N}_{yk})^{2} + 4\mathbf{N}_{xyk}^{2}}$$

$$|\mathbf{N}_{xak} = \mathbf{N}_{xk} + |\mathbf{N}_{xyk}| \cot \alpha_{k}$$

$$|\mathbf{N}_{xak} = \mathbf{N}_{xk} + |\mathbf{N}_{xyk}| \cot \alpha_{k}$$

$$|\mathbf{N}_{xk} = |\mathbf{N}_{xyk}| (\tan \alpha_{k} + \cot \alpha_{k})$$

 N_{xakr} , N_{yak} : tension forces in reinforcement placed in x and y direction in layer k

N_{ck} : Concrete compression force in layer k

Procedure of Shell Design

Modification of Tension force by considering the location of rebar

Distance from center section to center of outerRebar

The actual positions of y reinforcement in top and bottom layer are $z_{yat}^* = 53 \text{ mm}$ and

$$z^*_{yab} = -23 \text{ mm}$$
, the corresponding tension forces at those levels, N^*_{yat} and N^*_{yab} can be

obtained from:

All the measurements in mm

$$N_{yat}^{*} = \sum N_{ya} \frac{z_{ya} - z_{yab}^{*}}{z_{yat}^{*} - z_{yab}^{*}} = 398.18 \frac{-17.72 + 23}{53 + 23} = 27.68 \text{ N/mm}$$
$$N_{yab}^{*} = \sum N_{ya} \frac{z_{yat}^{*} - z_{ya}}{z_{yat}^{*} - z_{yab}^{*}} = 398.18 \frac{53 + 17.72}{53 + 23} = 370.50 \text{ N/mm}$$

1. Energy Result Graph for Time History Analysis

Print out energy results graph for isolator and vibration control devices in the nonlinear time history analysis.

1. Energy Result Graph for Time History Analysis

1. Energy Result Graph for Time History Analysis

Result > T.H. Graph/Text > Time History Energy Graph

< Text result of the each energy ratio >

MIDAS/1	Text Editor - [App4_Time history analysis.spf]		
File E	Edit View Window Help		
) 🖻 🖥] 😂 🖪 🐹 ங 🛍 📕 🖊 🖌 🗠 🖂 📕 🦽 🕉	% 🎉 a-b 🥂	ヽ_+
01 [≔] 02 T	IME HISTORY ANALYSIS ENERGY RESULT PERCENTATE ; TIME	HISTORY LOADCA	SE NO. = 1
03 == 04			
05 = 06 07 08	Energy Graph		Percentage (%)
09 10	(1) Dissipated Inelastic Energy [Inealstic Hinge]	Eh	9.196
11 12	(2) Kinetic Energy	Ek	6.503
13 [–] 14	(3) Elastic Strain Energy	Es	0.237
15 - 16	(4) Damping Energy	Ed	37.396
18	(5) Maxwell Damper Energy [Oil Damper]	Em	9.149
20 21	(6) Velocity Dependent Device Energy	Ev	0.000
22 23	(7) Strain Dependent Device [Steel Hyst. Isolator]	Et	6.959
24 - 25 -	(8) Isolator Device Energy	Eo	30.559
26 - 27	(9) Plastic Strain Energy [Plastic Matrial (Plate)]	Ep	0.000
28 - 29 30 + 31	(10) Input Energy Error (Input Energy[Ei] - Energy Sum[(1)~(9)])	 Ei ++++++++++++++++++++++++++++++++++++	100.000
31 32 = 33	Error (Input Energy[Ei] - Energy Sum[(1)~(9)])		0.000

Civil 2019 Pre & Post-Processing

1. Energy Result Graph for Time History Analysis

Result > T.H. Graph/Text > Time History Energy Graph

Civil 2019 Pre & Post-Processing

2. Strain Output for Material Nonlinear Analysis

- Strain results are provided for plastic materials, i.e. Tresca, Von Mises, Mohr-Coulomb, Drucker-Prager, and Concrete Damage.
- Damage ratios for compression and tension are provided for the 'Concrete Damage' model.

Results > Results > Strains > Plate Strains/ Solid Strains

Civil 2019 Pre & Post-Processing

2. Strain Output for Material Nonlinear Analysis

Results > Tables > Results Tables > Plate/ Solid > Strain(local)/ Strain(Global)

Re Tal	esults bles *																		
4	Reaction	1	- Reaction		1 🚺 MIDA	5/Gen 🚺 Re	sult-[Plate Strain()	Local)] ×											
P	Displacements		P Displacements		Elen	Load	Step	Node	Part	Strain-xx	Strain-yy	Strain-xy	Strain-Max	Strain-Min	Angle ([deg])	Max-Shear	Comp. Damage	Tens. Damage	Damage
	Truss	•	Truss	F	•	1 LDC1	nl 001	Cent	Тор	-9.802e-005	5.819e-005	0.000e+000	5.819e-005	-9.802e-005	90.0000	7.811e-005	6.720e-002	0.000e+000	6.720e-002
	Cable		Cable	»				Ocin	Bot	-9.802e-005	5.819e-005	0.000e+000	5.819e-005	-9.802e-005	-90.0000	7.811e-005	6.720e-002	0.000e+000	6.720e-002
	- Cable		cubic	·		1 LDC1	nl_002	Cent	Top	-2.6120-004	1.5510-004	0.000e+000	1.5510-004	-2.612e-004	90.0000	2.0826-004	1.791e-001	1.19/0-007	1.7916-001
	Beam		Beam	•					Top	-4.181e-004	2.482e-004	0.000e+000	2.482e-004	-4.181e-004	90.0000	3.332e-004	2.768e-001	1.197e-007	2.768e-001
	Plate 🕨	🕎 Force & Stress	Plate	►		1 LDC1	nl_003	Cent	Bot	-4.181e-004	2.482e-004	0.000e+000	2.482e-004	-4.181e-004	90.0000	3.332e-004	2.768e-001	1.197e-007	2.768e-001
	Plane Stress	Eorce (Local)	Plane Stress	Image: A start and a start		1 LDC1	nl 004	Cent	Тор	-7.988e-004	4.742e-004	0.000e+000	4.742e-004	-7.988e-004	90.0000	6.365e-004	3.963e-001	1.197e-007	3.963e-001
	Diana Charles		Diana Charles						Bot	-7.988e-004	4.742e-004	0.000e+000	4.742e-004	-7.988e-004	90.0000	6.365e-004	3.963e-001	1.197e-007	3.963e-001
	Plane Strain	Force (Global)	Plane Strain	r		1 LDC1	nl_005	Cent	Top	-1.23/e-003	7.3438-004	0.000e+000	7.3436-004	-1.237e-003	90.0000	9.8566-004	4.9466-001	1.19/0-007	4.9466-001
	Axisymmetric 🕨	Force (Unit Length)	Axisymmetric	►					Top	-1.708e-003	1.014e-003	0.000e+000	1.014e-003	-1.708e-003	90.0000	1.361e-003	5.690e-001	1.197e-007	5.690e-001
	Solid	Stress (Local)	Solid	Eorce & St	ress	1 LDC1	nl_006	Cent	Bot	-1.708e-003	1.014e-003	0.000e+000	1.014e-003	-1.708e-003	-90.0000	1.361e-003	5.690e-001	1.197e-007	5.690e-001
	14/-II		147-11			1 1001	nl 007	Cent	Тор	-2.197e-003	1.305e-003	0.000e+000	1.305e-003	-2.197e-003	90.0000	1.751e-003	6.247e-001	1.197e-007	6.247e-001
_	vvali v	Stress (Global)	vvali	Force (Loca	ai)			- Ocini	Bot	-2.197e-003	1.305e-003	0.000e+000	1.305e-003	-2.197e-003	-90.0000	1.751e-003	6.247e-001	1.197e-007	6.247e-001
1	r Elastic Link	🏆 Strain (Local)	Elastic Link	Force (Glo	oal)	1 LDC1	nl_008	Cent	l op Det	-2.693e-003	1.599e-003	0.000e+000	1.599e-003	-2.693e-003	90.0000	2.146e-003	6.692e-001	1.19/e-00/	6.692e-001
7	🚽 General Link	🖳 Strain (Global)	General Link	Stress (Loc	al)				Top	-2.093e-003	1.896e-003	0.000e+000	1.896e-003	-2.093e-003	90.0000	2.146e-003	7.069e-001	1.197e-007	7.069e-001
đ	Vibration Mode Shane	- · ·	J Vibration Mode Shape			1 LDC1	nl_009	Cent	Bot	-3.193e-003	1.896e-003	0.000e+000	1.896e-003	-3.193e-003	-90.0000	2.545e-003	7.069e-001	1.197e-007	7.069e-001
-			1 vibration mode shape	Stress (GIO	bal)	1 1001	pl 010	Cont	Тор	-3.695e-003	2.193e-003	0.000e+000	2.193e-003	-3.695e-003	90.0000	2.944e-003	7.352e-001	1.197e-007	7.352e-001
1	Buckling Mode Shape		Buckling Mode Shape	🍟 Strain (Loc	al)		111_010	Cent	Bot	-3.695e-003	2.193e-003	0.000e+000	2.193e-003	-3.695e-003	-90.0000	2.944e-003	7.352e-001	1.197e-007	7.352e-001
Π.	Nodal Results of RS		Nodal Results of RS	🛂 Strain (Glo	bal)	1 LDC1	nl_011	Cent	Top	-4.197e-003	2.492e-003	0.000e+000	2.492e-003	-4.197e-003	90.0000	3.344e-003	7.573e-001	1.197e-007	7.573e-001
	Story		Stop				-		Top	-4.197e-003	2.492e-003	0.000e+000	2.492e-003 2.700e-003	-4.197e-003	-90.0000	3.3440-003	7.573e-001	1.197e-007	7.5738-001
	story		story	í l		1 LDC1	nl_012	Cent	Bot	-4 700e-003	2.790e-003	0.000e+000	2.790e-003	-4 700e-003	-90 0000	3 745e-003	7 793e-001	1 197e-007	7 793e-001
	Inelastic Hinge	`	Inelastic Hinge	•		4 1004	-1.012	Cant	Тор	-5.203e-003	3.089e-003	0.000e+000	3.089e-003	-5.203e-003	90.0000	4.146e-003	7.996e-001	1.197e-007	7.996e-001
	Time History Analysis	•	Time History Analysis	►			111_013	Cent	Bot	-5.203e-003	3.089e-003	0.000e+000	3.089e-003	-5.203e-003	-90.0000	4.146e-003	7.996e-001	1.197e-007	7.996e-001
	Heat of Hydration Analysis	•	Heat of Hydration Analysis	>		1 LDC1	ni 014	Cent	Тор	-5.706e-003	3.388e-003	0.000e+000	3.388e-003	-5.706e-003	90.0000	4.547e-003	8.101e-001	1.197e-007	8.101e-001
							-		Bot	-5.706e-003	3.388e-003	0.000e+000	3.388e-003	-5.706e-003	-90.0000	4.547e-003	8.101e-001	1.19/e-00/	8.101e-001
	lendon	'	Tendon	^		1 LDC1	nl_015	Cent	Bot	-6.209e-003	3.686e-003	0.000e+000	3.686e-003	-6.209e-003	-90 0000	4.948e-003	8 206e-001	1 197e-007	8.206e-001
	Composite Section For C.S.		Composite Section For C.S.	► I		4 1004	-1.040	0	Тор	-6.713e-003	3.985e-003	0.000e+000	3.985e-003	-6.713e-003	90.0000	5.349e-003	8.311e-001	1.197e-007	8.311e-001
	Displacement Participation Factor	•	Displacement Participation Factor	•		LDC1	11_016	Cent	Bot	-6.713e-003	3.985e-003	0.000e+000	3.985e-003	-6.713e-003	-90.0000	5.349e-003	8.311e-001	1.197e-007	8.311e-001
	Initial Element Force		Table Flowert Form			1 LDC1	nl 017	Cent	Тор	-7.217e-003	4.285e-003	0.000e+000	4.285e-003	-7.217e-003	90.0000	5.751e-003	8.416e-001	1.197e-007	8.416e-001
÷						_	-		Bot	-/.21/e-003	4.285e-003	0.000e+000	4.285e-003	-7.21/e-003	-90.0000	5./51e-003	8.416e-001	1.19/e-007	8.416e-001
A	Imperfection		Imperfection			1 LDC1	nl 018	Cent	TOP	-7.7228-003	4.0048-003	0.00000000000	4.0848-003	-7.7228-003	30.0000	0.1538-003	0.021e-001	1.1976-007	0.021e-001
				- ,	Υ <u></u> γ Plate I	cai strain(L) 🔥 🗛	ate mastic Strai	n(L) /	_										

<Plate Strain (local) menu>

<Solid Strain (local) menu>

Plate Strain Table

3. Multi-linear force-deformation function for Point Spring Support and Elastic Link

Multi-linear curve for Point Spring Support and Elastic Link can be defined as a function without limitation in terms of number of data.

4. Rail Track Analysis Report with the US Unit Setting

Rail Track Analysis report supports the US unit system as well as SI unit system.

Structure > Wizard > Rail Track Analysis Model > Rail Track Analysis Report

Rail Track Analysis Report			×
Working Directory	E:₩0622₩Sample₩S	ample Model File₩	
Sample Model File_Add1_Relativ Sample Model File_Add2_Rotativ Unit Setting	veDisp.mcb veDisp_Mov1.mcb veDisp_Mov2.mcb veDisp_Mov3.mcb veDisp_Mov4.mcb veDisp_Mov5.mcb veDisp_Mov5.mcb veDisp_Mov6.mcb veDisp_Mov8.mcb veDisp_Mov8.mcb veDisp_Mov9.mcb onAngle.mcb		
Checking Criteria			
Maximum permissible addition	al rail stresses		
Compressive stress		12	ksi
Tensile stress		14	ksi
Permissible horizontal displace	ements due to Braking/	Traction	
Relative displacement betwe	en Deck and Rail	0.5	in
Absolute displacement of the	Deck	0.5	in
Permissible displacement betw end and Embankment or betw consecutive Deck ends	veen Top of Deck veen Top of two	0.5	in
		ОК	Cancel
	Report Setting to t	he US unit	

5. Data Interface with GTS NX

Reactions from Point Spring Support can be exported to GTS NX.

- Force-displacement results of soil can be imported from GTS NX into midas Civil, and the input data of the multi-linear Point Spring Supports are updated.
 - File > Export > Nodal Results for GTS
 - File > Import > Nodal Results for GTS

JUI 013			H Stage 3	×]		21 <u></u> 12	POST-PROCESSOR REACTION FORCE	
Export Nodal Results	—					7	FORCE-XYZ MIN. REACTION	
Target Nodes				THE REAL PROPERTY OF THE PROPE			NODE=296 FX: 0.0000E+000	
All (By Supports, Point Spring, S)	Spec. Disp.)			A CONTRACTOR OF		5	FY: 0.0000E+000 FZ: 1.9212E+001	
Selected Nodes							FXYZ: 1.9212E+001 MAX. REACTION	
Select Load Case & Direction							NODE=370 FX: -7.1830E+001	
Stage	Base			424343			FY: 1.1342E-002 FZ: 1.0578E+002	
Load Cases/Combination	ST: SW			34343	THE		FXYZ: 1.2786E+002	
Step	· · · · · · · · · · · · · · · · · · ·				11111		STAGE:Stage 3 CS: DEAD LOAD LAST	
Result Type	Reactions		-		TTTTT		MAX : 370 MIN : 296 FILE: I COMPOSIT~	
Result Components	All	×	እ		· · • • •		UNIT: kN DATE: 07/07/2018	6
	OK Cancel			Ì I Ì Ì Ì Ì			X:-0.832	aCk:
		· con						100
Export Nodal Results	—	spri 6	MIDAS/C		Subren	_		
Target Nodes							NODAL DESP TOTAL, m 20.141.06313e	
C All (By Supports, Spec. Die	sp)						28.4% 1.02151 30.0% 41.00069	
Selected Nodes							2.3%+9.7%880e 2.3%+9.5%67e 1.2%	
Load Sets (By Force)	User Defined 🔹 📖						0.7% 9.17440e 0.5% 0.4% 0.75815e	
Output Data				1 CARAC	PERCENT SOLE		0.3%+0.55001e 0.3%+0.34107e 0.2%+0.1937e	
Analysis Set	NS_every step3			Max:0.106	313		0.1% +7.92561e 0.1% +7.71748e	
Step	Nonlinear Static(In-situ / 🤝						0.0% 7.30121e	
Result Type	Reactions			1.18				
Result Components	All				NHAT AND			
ОК	Cancel Apply			to best a local		and as response to recognize		

6. Tekla Structure 2018 Interface

- Tekla Structures interface is a tool provided to speed up the entire modeling, analysis, and design procedure of a structure by direct data transfer with midas Civil.
- Data transfer is limited to structural elements.
- Tekla Structure interface enables us to directly transfer a Tekla model data to midas Civil, and delivery back to the Tekla model file. midas Civil text file (*.mct) is used for the roundtrip.
 - File > Import > midas Civil MCT File
 - File > Export > midas Civil MCT File

Category	Features	Tekla <> Gen
	concrete	\diamond
MATERIAL	steel	\diamond
WATERIAL	pre cast - wood and other types	<>
	Material user defined	<>
	vertical column	<>
	inclined column	<>
ELEMENT TYPE/	straight beam	\diamond
ROTATIONS	curved beam	>
	Slab	\diamond
	vertical panel	>
2D ELEMENTS	Concrete panels and slab	\diamond
	support	>
BOUNDARY CONDITIONS	beam end release	\diamond
	section offset	>
	self weigth	>
STATIC LOAD	linear load (uniform or trapezoidal)	\diamond
	new element	\diamond
MERGE OPTION	new element that divide other elements	\diamond
	topology changes	\diamond