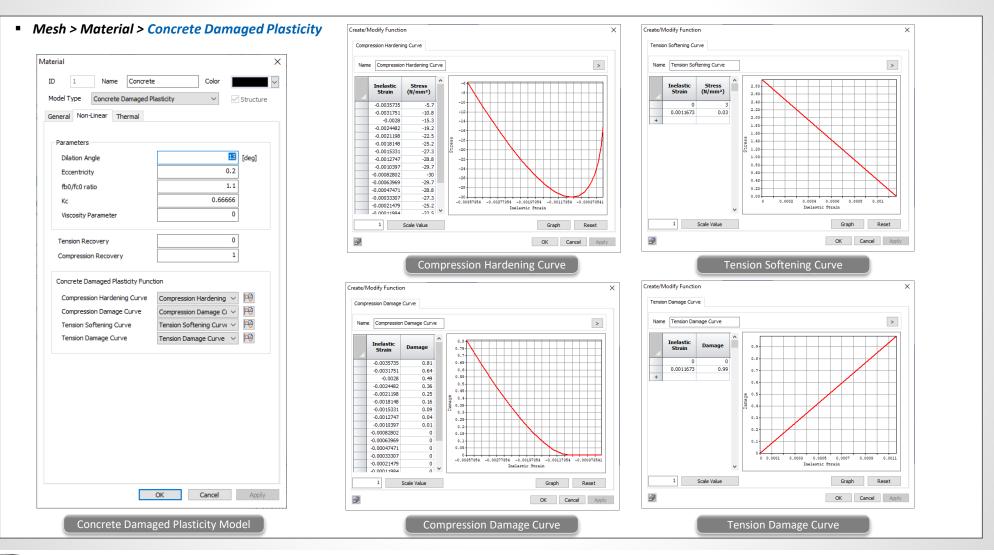


Release Note

Release Date : January 2021

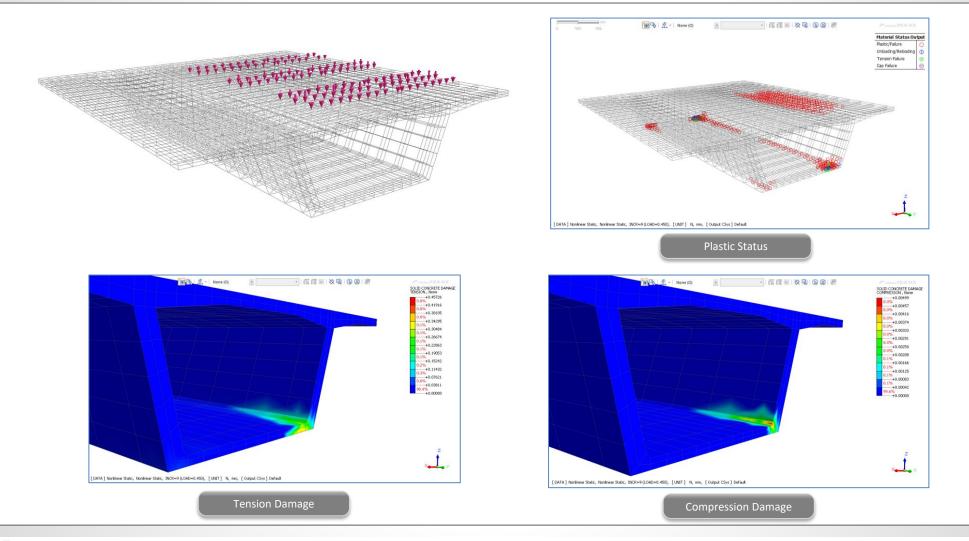
Product Ver. : FEA NX 2021 (v1.1)

ADVANCED NONLINEAR AND DETAIL Mew Panadig Ain Adjanced Structural Analys Cs

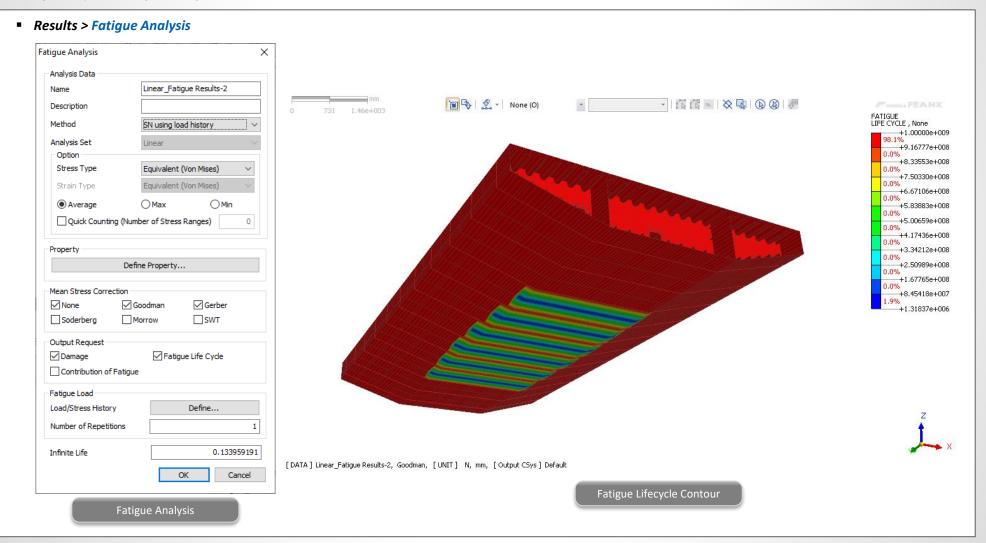

Enhancements

- 1. Concrete Damage Plasticity Model
- 2. Fatigue Analysis
- 3. Virtual Beam for Calculation of Resultant Forces of 2D/3D Mesh
- 4. Displacement-Control Method for Nonlinear Analysis
- 5. Modal Participation Factor
- 6. Improvement of Multi-Layered Grid (Composite Shell)
- 7. Improvement of Bond Slip Interface
- 8. Modified Menegotto-Pinto Material Model for Steel
- 9. General Hyperbolic Equation GHE-S Model
- 10. 3D Hill Plastic Model
- 11. Creep & Shrinkage Function and Expansive Additive for Concrete (JCI 2016/JSCE 2017)

1. Concrete Damaged Plasticity Model


• Concrete Damaged Plasticity Model is now available in midas FEA NX. It provides a general capability for modeling concrete and other quasi-brittle materials including masonry and is designed for applications in which concrete is subjected to dynamic loading due to earthquake under low confining pressures.

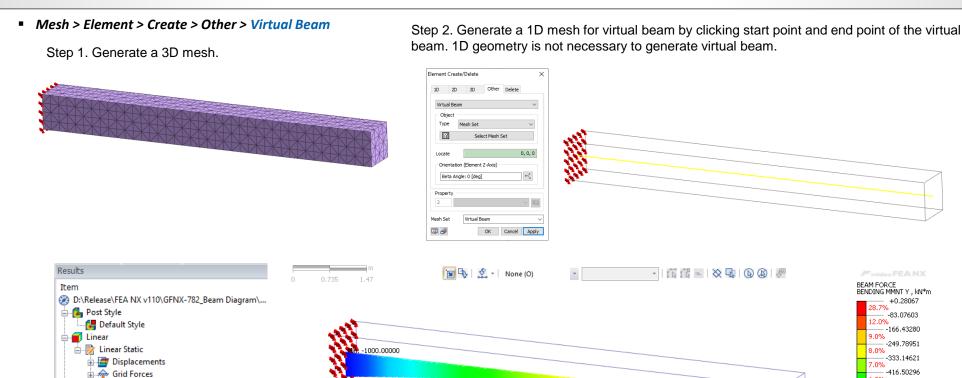
MIDAS


1. Concrete Damaged Plasticity Model

• Using this model, the following behaviors of concrete can be described. Different behaviors for tension and compression. Different reductions of the elastic stiffness when unloading for tension and compression. Stiffness recovery effects during cyclic load reversals.

2. Fatigue Analysis

- · Fatigue analysis can be performed on the basis of stress (stress-life method) and strain (strain-life method).
- · Fatigue lifecycle and fatigue damage can be viewed for the various mean stress correction methods, i.e. Goodman, Gerber, etc.



FEA NX 2021 (v1.1) Release Note

FEA NX 2021

3. Virtual Beam for Calculation of Resultant Forces of 2D/3D Mesh

- Resultant forces of 2D/3D mesh can be calculated and viewed as force diagram.
- This is useful to check moment/shear force diagram for the pile modelled with solid elements.

BEAM FORCE BENDING MMNT Y, kN*m +0.28067-83.07603 12.0% -166.43280 9.0% -249.78951 8.0% -333.14621 -416.50296 -499.85968 -583.21637 -666.57312 -749.92981 -833.28656 -916.64325 -1000.00000

Max 0.28067

Bending Moment Diagram for Virtual Beam

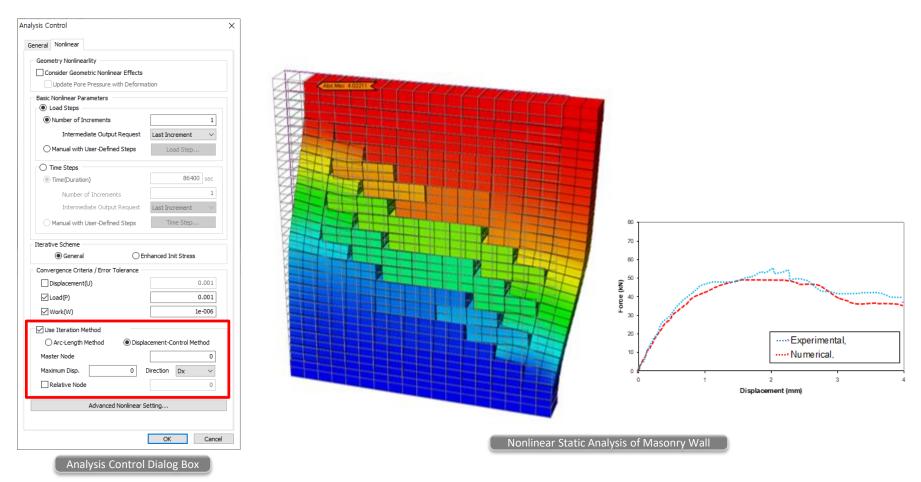
Reactions

🛓 🛺 Virtual Beam Forces

🦾 TORQUE

Solid Stresses

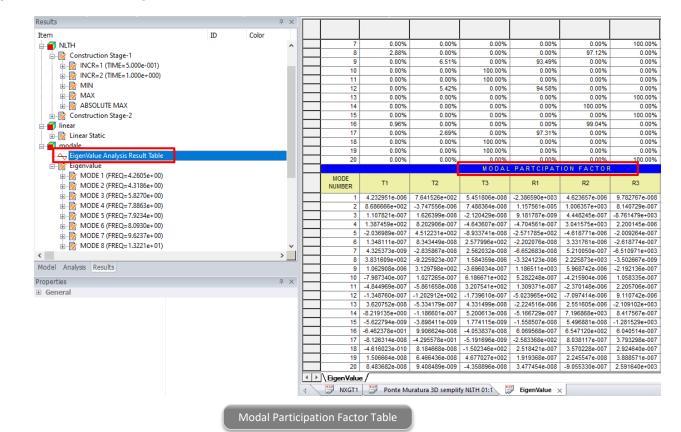
AXIAL FORCE


🦾 SHEAR FORCE Y

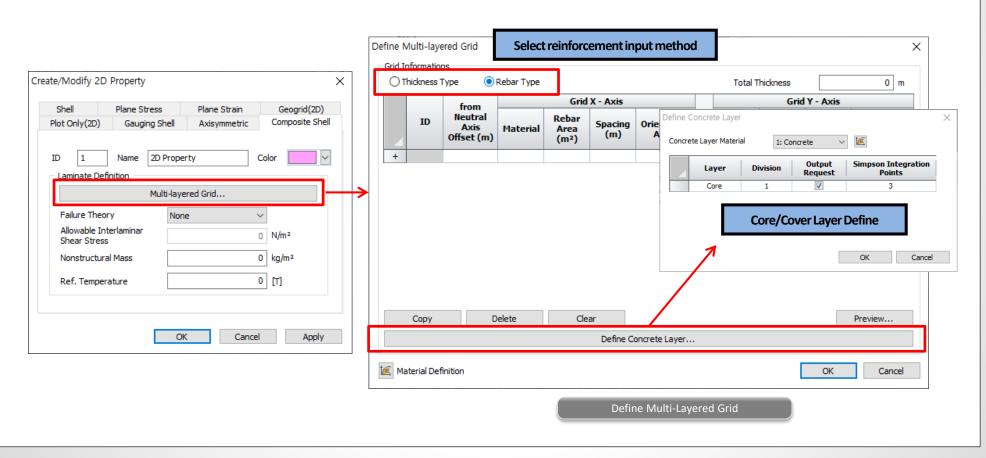
La SHEAR FORCE Z

Le BENDING MOMENT Y Le BENDING MOMENT Z

4. Displacement-Control Method for Nonlinear Analysis


- · For performing nonlinear analysis, the Displacement-Control method is added for the iteration method.
- Global displacement of a master node can be controlled, or relative displacement between two nodes can be controlled using the 'Relative Node' option.
- Analysis > Analysis Case > General > Nonlinear Static > Analysis Control > Nonlinear

5. Modal Participation Factor


- Modal participation factors are added on the Eigenvalue Analysis Result table.
- Modal participation factors measure the interaction between the modes and the directional excitation in a given reference frame. Larger values indicate a stronger contribution to the dynamic response.

Analysis > Analysis Case > General > Eigenvalue

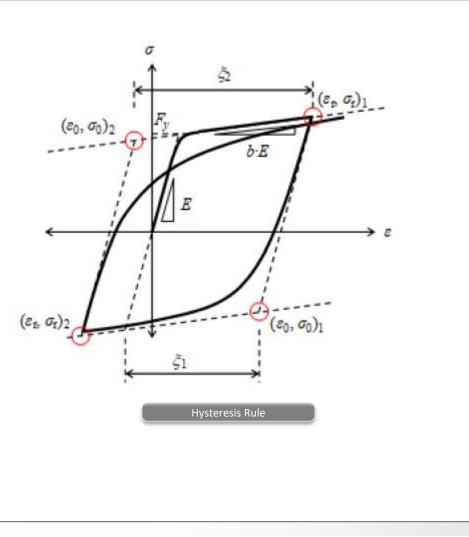
6. Improvement of Multi-Layered Grid (Composite Shell)

- Composite Shell Property for Multi-Layered Grid is added.
- In the existing Multi-Layered Gird, only the results for the reinforcing bar layer could be checked, but the improved Multi-Layered Grid defines the Core Layer and the Cover Layer, so that the results for this layer can be additionally checked.
- Reinforcement input method (Thickness Type, Rebar Type) is added.
- Mesh > Prop./CSys./Func. > Property > Composite Shell

7. Improvement of Bond Slip Interface

• For the bond slip interface, we define stiffness for normal and shear direction. The normal and shear direction represents the linear and nonlinear behavior of bond slip, respectively. Now, the behavior of the tangential direction of the interface can be defined by the user between linear and nonlinear behavior.

Material X ID 1 Name Interface Color	Coupling Tangential Stiffness Modulus(Kt)
Model Type Interface V	O Normal Stiffness Modulus(Kn)
General Seepage Thermal	Shear Stiffness Modulus(Ks)
Interface Nonlinearities Bond Slip 🗸	Concer ourness modeles(its)
Structural Parameters	/
Normal Stiffness Modulus(Kn) 260000 N/mm³ Shear Stiffness Modulus(Ks) 26000 N/mm³	 Normal Stiffness Modulus(Kn)
O Polynomial Function	
Constant (a) 0	: Linear behavior in tangential direction
Constant (b)	 Shear Stiffness Modulus(Ks)
Constant (c)	
Constant (d) 0 mm	: Nonlinear behavior in tangential direction
Shear Traction 0 N/mm ²	
Multilinear Hardening	\mathcal{U}_n^{top} \mathcal{U}_n^{top}
Multilinear Hardening Function	
Coupling Tangential Stiffness Modulus(Kt) O Normal Stiffness Modulus(Kn)	• $\rightarrow u_s^{top}$
Shear Stiffness Modulus(Ks)	
	$n \wedge t$
	s s s s s s s s s s s s s s s s s s s
	\mathcal{U}_n^{bot}
	\checkmark X • \downarrow u_z^{bot}
OK Cancel Apply	


8. Modified Menegotto-Pinto Material Model for Steel

• This is a model proposed by Menegotto & Pinto and modified by Filipoor et al.

Mesh > Material > Isotropic > Menegotto-Pinto

• The model is widely used to simulate the dynamic response of steel structures and steel bars of reinforced concrete structures.

ID 1	Name	Isotropic		Color		
Model Typ	e Menegotto	-Pinto Model		\sim	🗹 Str	uctur
General	Thermal Temp	erature Depe	endent			
Elastic	Modulus(E)		50	000000	N/m²	
Inc. of	Elastic Modulus			0	N/m³	
Inc. of	Elastic Modulus F	Ref. Height		0	m	
Poissor	n's Ratio(v)			0.3		
Unit W	eight(γ)			20000	N/m³	
Basic P	roperties	Dir	rect Input	OU	sing Code	H
Initial S	tress Parameters	;				
Ko Det	ermination			1		
۲	Automatic					
	Manual		Aniso	tropy		
	l Parameter					
Therma	al Coefficient			1e-006	1/[T]	
Molecu	lar vapor diffusio	n coefficient		0	m²/sec	
Therma	al diffusion enhan	icement		0		
Dampin	g Ratio(For Dyna	imic)				
Dampin	ig Ratio			0.05		_
Skeleto	n Curve					
	0) N/m ²	Ro		20	
fy		7	100			
fy E	0		a1		18.5	

9. General Hyperbolic Equation GHE-S Model

- Experimental data can be converted into general hyperbolic equation to define nonlinear material properties.
- Mesh > Material > Isotropic > GHE-S

10. 3D Hill Plastic Model

- Orthotropic 3D Hill Plastic Model is added.
- It is possible to define nonlinear material properties of orthotropic, and it is easy to define materials for wood.
- Mesh > Material > Orthotropic > 3D Hill Plastic

Vaterial									\times
ID	1	Name	Orthotrop	ic		Color			_
Mode	Type	3D Hill Plast	ic			~		Structure	
Paran	neter 1	Parameter2	Thermal	Porc	us				
Ela	astic Mor	dulus(E1)		[26	+009	N/m²		
Ela	astic Mo	dulus(E2)		ĺ	16	+009	N/m²		
Ela	astic Mo	dulus <mark>(</mark> E3)		[16	+009	N/m²		
Po	isson's F	Ratio(v12)		[0.4			
Po	isson's F	Ratio(v23)		[0.2			
Po	isson's F	Ratio(v31)		[0.4			
Sh	ear Mod	dulus(G12)		[80000	00000	N/m²		
Sh	ear Mod	dulus(G23)		[40000	00000	N/m²		
Sh	ear Mod	lulus(G31)		[40000	00000	N/m²		
Ma	ax Abs S	tress xx		[0	N/m²		
Ma	ax Abs S	stress yy		[0	N/m²		
Ma	ax Abs S	stress zz		ļ		0	N/m²		
Ma	x Abs S	tress xy		ļ		0	N/m²		
Ma	x Abs S	tress yz		ļ		0	N/m²		
Ma	x Abs S	tress zx		ļ		0	N/m²		
Pla	stic You	ng's Modulus	(Eup)			0	N/m²		
			(ж		Cancel		Apply	
	- 1	30	Hill Pla	istic	Mod	el			

11. Creep & Shrinkage Function and Expansive Additive for Concrete (JCI 2016/JSCE 2017)

- JCI 2016/ JSCE 2017 Japanese shrinkage standards have been added.
- An option to consider Expansive Additive for Concrete, and the user can also define the coefficient value for the Expansive Additive for Concrete.
- Mesh > Prop./CSys./Func. > Creep/Shrinkage

2	JAPAN(JSCE2012)	×			Code JAPAN(JSCE2012) V	
JAPA Cen	PCA Combined (ACI & PCA)	0 kg/m^3)	3400	N/m³	JAPAN(JSCE2012) Cement Content (260 kg/m^3 ~ 500 kg/m^3) 3400	N/m³
Wat	AASHTO European	kg/m^3)	1500	N/m³	Water Content (130 kg/m^3 ~ 230 kg/m^3) 1500	N/m³
Cen	AS 3600-2009 AS/RTA 5100.5-2011		Normal portland cement	~	Cement Type Normal portland cement	~
Max	Russian Korean Standard	(20 ~ 70)	50	[17]	Maximum Temperature in Concrete (20 ~ 70) 50	[T]
	Japanese Standard JAPAN(JSCE) JAPAN(JSCE2007)	ncrete			Use Expansive Additive for Concrete	
	JAPAN(JCI2006) JAPAN(JCI2016) JAPAN(JSCE2012) JAPAN(JSCE2017)	0.69	0_ex 1.11 t_ex,0	0.3	ε_ex,∞ 150 a_ex 0.69 b_ex 1.11 t_ex,0	0.3
	Chinese Standro China (JTG3362-2018) China (JTG D62-2004) KCI-USD12		OK	Cancel	ОК	Cance